L., L., et al. Carbon nanotube-assisted optical activation of TGF-β signalling by near-infrared light. Nat Nanotechnol. 10, 5, 465-71 (2015).Abstract

    Receptor-mediated signal transduction modulates complex cellular behaviours such as cell growth, migration and differentiation. Although photoactivatable proteins have emerged as a powerful tool for controlling molecular interactions and signalling cascades at precise times and spaces using light, many of these light-sensitive proteins are activated by ultraviolent or visible light, which has limited tissue penetration. Here, we report a single-walled carbon nanotube (SWCNT)-assisted approach that enables near-infraredlight-triggered activation of transforming growth factor β (TGF-β) signal transduction, an important signalling pathway in embryonic development and cancer progression. The protein complex of TGF-β and its latency-associated peptide is conjugated onto SWCNTs, where TGF-β is inactive. Upon near-infrared irradiation, TGF-β is released through the photothermal effect of SWCNTs and becomes active. The released TGF-β activates downstream signal transduction in live cells and modulates cellular behaviours. Furthermore, preliminary studies show that the method can be used to mediate TGF-β signalling in living mice.

    Structure of bone morphogenetic protein 9 procomplex
    Mi, L.-Z., et al. Structure of bone morphogenetic protein 9 procomplex. Proc Natl Acad Sci USA 112, 3710-5 (2015).Abstract

    Bone morphogenetic proteins (BMPs) belong to the TGF-β family, whose 33 members regulate multiple aspects of morphogenesis. TGF-β family members are secreted as procomplexes containing a small growth factor dimer associated with two larger prodomains. As isolated procomplexes, some members are latent, whereas most are active; what determines these differences is unknown. Here, studies on pro-BMP structures and binding to receptors lead to insights into mechanisms that regulate latency in the TGF-β family and into the functions of their highly divergent prodomains. The observed open-armed, nonlatent conformation of pro-BMP9 and pro-BMP7 contrasts with the cross-armed, latent conformation of pro-TGF-β1. Despite markedly different arm orientations in pro-BMP and pro-TGF-β, the arm domain of the prodomain can similarly associate with the growth factor, whereas prodomain elements N- and C-terminal to the arm associate differently with the growth factor and may compete with one another to regulate latency and stepwise displacement by type I and II receptors. Sequence conservation suggests that pro-BMP9 can adopt both cross-armed and open-armed conformations. We propose that interactors in the matrix stabilize a cross-armed pro-BMP conformation and regulate transition between cross-armed, latent and open-armed, nonlatent pro-BMP conformations.

    Dong, X., Hudson, N.E., Lu, C. & Springer, T.A. Structural determinants of integrin β-subunit specificity for latent TGF-β. Nat Struct Mol Biol. 21, 12, 1091-6 (2014).Abstract

    Eight integrin α-β heterodimers recognize ligands with an Arg-Gly-Asp (RGD) motif. However, the structural mechanism by which integrins differentiate among extracellular proteins with RGD motifs is not understood. Here, crystal structures, mutations and peptide-affinity measurements show that αVβ6 binds with high affinity to a RGDLXXL/I motif within the prodomains of TGF-β1 and TGF-β3. The LXXL/I motif forms an amphipathic α-helix that binds in a hydrophobic pocket in the β6 subunit. Elucidation of the basis for ligand binding specificity by the integrin β subunit reveals contributions by three different βI-domain loops, which we designatespecificity-determining loops (SDLs) 1, 2 and 3. Variation in a pair of single key residues in SDL1 and SDL3 correlates with the variation of the entire β subunit in integrin evolution, thus suggesting a paradigmatic role in overall β-subunit function.