Publications

    Vorup-Jensen, T., et al. Binding between the integrin αXβ2 (CD11c/CD18) and heparin. J Biol Chem. 282, 42, 30869-77 (2007).Abstract

    The interactions between cell surface receptors and sulfated glucosamineglycans serve ubiquitous roles in cell adhesion and receptor signaling. Heparin, a highly sulfated polymer of uronic acids and glucosamine, binds strongly to the integrin receptor alphaXbeta2 (p150,95, CD11c/CD18). Here, we analyze the structural motifs within heparin that constitute high affinity binding sites for the I domain of integrin alphaXbeta2. Heparin oligomers with chain lengths of 10 saccharide residues or higher provide strong inhibition of the binding by the alphaX I domain to the complement fragment iC3b. By contrast, smaller oligomers or the synthetic heparinoid fondaparinux were not able to block the binding. Semipurified heparin oligomers with 12 saccharide residues identified the fully sulfated species as the most potent antagonist of iC3b, with a 1.3 microM affinity for the alphaX I domain. In studies of direct binding by the alphaX I domain to immobilized heparin, we found that the interaction is conformationally regulated and requires Mg2+. Furthermore, the fully sulfated heparin fragment induced conformational change in the ectodomain of the alphaXbeta2 receptor, also demonstrating allosteric linkage between heparin binding and integrin conformation.

    Zhu, J., Boylan, B., Luo, B.-H., Newman, P.J. & Springer, T.A. Tests of the Extension and Deadbolt Models of Integrin Activation. J Biol Chem. 282, 16, 11914-20 (2007).Abstract

    Despite extensive evidence that integrin conformational changes between bent and extended conformations regulate affinity for ligands, an alternative hypothesis has been proposed in which a "deadbolt" can regulate affinity for ligand in the absence of extension. Here, we tested both the deadbolt and the extension models. According to the deadbolt model, a hairpin loop in the beta3 tail domain could act as a deadbolt to restrain the displacement of the beta3 I domain beta6-alpha7 loop and maintain integrin in the low affinity state. We found that mutating or deleting the beta3 tail domain loop has no effect on ligand binding by either alphaIIbbeta 3 or alphaVbeta3 integrins. In contrast, we found that mutations that lock integrins in the bent conformation with disulfide bonds resist inside-out activation induced by cytoplasmic domain mutation. Furthermore, we demonstrated that extension is required for accessibility to fibronectin but not smaller fragments. The data demonstrate that integrin extension is required for ligand binding during integrin inside-out signaling and that the deadbolt does not regulate integrin activation.

    Vorup-Jensen, T., Waldron, T.T., Astrof, N., Shimaoka, M. & Springer, T.A. The connection between metal ion affinity and ligand affinity in integrin I domains. Biochim Biophys Acta. 1774, 9, 1148-55 (2007).Abstract

    Integrins are cell-surface heterodimeric proteins that mediate cell-cell, cell-matrix, and cell-pathogen interactions. Half of the known integrin alpha subunits contain inserted domains (I domains) that coordinate ligand through a metal ion. Although the importance of conformational changes within isolated I domains in regulating ligand binding has been reported, the relationship between metal ion binding affinity and ligand binding affinity has not been elucidated. Metal and ligand binding by several I domain mutants that are stabilized in different conformations are investigated using isothermal titration calorimetry and surface plasmon resonance studies. This work suggests an inverse relationship between metal ion affinity and ligand binding affinity (i.e. constructs with a high affinity for ligand exhibit a low affinity for metal). This trend is discussed in the context of structural studies to provide an understanding of interplay between metal ion binding and ligand affinities and conformational changes.

    Zhu, J., et al. Requirement of α and β subunit transmembrane helix separation for integrin outside-in signaling. Blood 110, 7, 2475-83 (2007).Abstract

    Adhesion to extracellular ligands through integrins regulates cell shape, migration, growth, and survival. How integrins transmit signals in the outside-to-in direction remains unknown. Whereas in resting integrins the alpha and beta subunit transmembrane domains are associated, ligand binding promotes dissociation and separation of these domains. Here we address whether such separation is required for outside-in signaling. By introduction of an intersubunit disulfide bond, we generated mutant integrin alphaIIbbeta3 with blocked transmembrane separation that binds ligand, mediates adhesion, adopts an extended conformation after ligand binding, and forms antibody-induced macroclusters on the cell surface similarly to wild type. However, the mutant integrin exhibits a profound defect in adhesion-induced outside-in signaling as measured by cell spreading, actin stress-fiber and focal adhesion formation, and focal adhesion kinase activation. This defect was rescued by reduction of the disulfide bond. Our results demonstrate that the separation of transmembrane domains is required for integrin outside-in signal transduction.

    Bonasio, R., et al. Specific and covalent labeling of a membrane protein with organic fluorochromes and quantume dots. Proc Natl Acad Sci USA 104, 37, 14753-8 (2007).Abstract

    The real-time observation of protein dynamics in living cells and organisms is of fundamental importance for understanding biological processes. Most approaches to labeling proteins exploit noncovalent interactions, unsuitable to long-term studies, or genetic fusion to naturally occurring fluorescent proteins that often have unsatisfactory optical properties. Here we used the fungal enzyme cutinase and its suicide substrate p-nitrophenyl phosphonate to covalently attach a variety of labels to the integrin lymphocyte function-associated antigen-1 (LFA-1) on the surface of living cells. Cutinase was embedded in the extracellular domain of LFA-1 with no appreciable influence on integrin function and conformational regulation. p-nitrophenyl phosphonate-conjugated fluorochromes, including the very bright and stable quantum dots, bound efficiently and specifically to LFA-1/cutinase. The availability of a genetically encoded tag that binds covalently to quantum dots could foster the development of new experimental strategies for the study of protein dynamics in vivo.

    Luo, B.-H., Carman, C.V. & Springer, T.A. Structural basis of integrin regulation and signaling. Annu Rev Immunol. 25, 619-47 (2007).Abstract

    Integrins are cell adhesion molecules that mediate cell-cell, cell-extracellular matrix, and cell-pathogen interactions. They play critical roles for the immune system in leukocyte trafficking and migration, immunological synapse formation, costimulation, and phagocytosis. Integrin adhesiveness can be dynamically regulated through a process termed inside-out signaling. In addition, ligand binding transduces signals from the extracellular domain to the cytoplasm in the classical outside-in direction. Recent structural, biochemical, and biophysical studies have greatly advanced our understanding of the mechanisms of integrin bidirectional signaling across the plasma membrane. Large-scale reorientations of the ectodomain of up to 200 A couple to conformational change in ligand-binding sites and are linked to changes in alpha and beta subunit transmembrane domain association. In this review, we focus on integrin structure as it relates to affinity modulation, ligand binding, outside-in signaling, and cell surface distribution dynamics.

    Carman, C.V., et al. Transcellular diapedesis is initiated by invasive podosomes. Immunity 26, 6, 784-97 (2007).Abstract

    Diapedesis is critical for immune system function and inflammatory responses. This occurs by migration of blood leukocytes either directly through individual microvascular endothelial cells (the "transcellular" route) or between them (the "paracellular" route). Mechanisms for transcellular pore formation in endothelium remain unknown. Here we demonstrate that lymphocytes used podosomes and extended "invasive podosomes" to palpate the surface of, and ultimately form transcellular pores through, the endothelium. In lymphocytes, these structures were dependent on Src kinase and the actin regulatory protein WASP; inhibition of podosome formation selectively blocked the transcellular route of diapedesis. In endothelium, membrane fusion events dependent on the SNARE-containing membrane fusion complex and intracellular calcium were required for efficient transcellular pore formation in response to podosomes. These findings provide insights into basic mechanisms for leukocyte trafficking and the functions of podosomes.

    Chen, X., et al. Structural plasticity in IgSF domain 4 of ICAM-1 mediates cell surface dimerization. Proc Natl Acad Sci USA 104, 39, 15358-63 (2007).Abstract

    The Ig superfamily (IgSF) intercellular adhesion molecule-1 (ICAM-1) equilibrates between monomeric and dimeric forms on the cell surface, and dimerization enhances cell adhesion. A crystal structure of ICAM-1 IgSF domains (D) 3-5 revealed a unique dimerization interface in which D4s of two protomers fuse through edge beta-strands to form a single super beta-sandwich domain. Here, we describe a crystal structure at 2.7-A resolution of monomeric ICAM-1 D3-D5, stabilized by the monomer-specific Fab CA7. CA7 binds to D5 in a region that is buried in the dimeric interface and is distal from the dimerization site in D4. In monomeric ICAM-1 D3-D5, a 16-residue loop in D4 that is disordered in the dimeric structure could clearly be traced as a BC loop, a short C strand, and a CE meander with a cis-Pro followed by a solvent-exposed, flexible four-residue region. Deletions of 6 or 10 residues showed that the C-strand is essential for monomer stability, whereas a distinct six-residue deletion showed little contribution of the CE meander. Mutation of two inward-pointing Leu residues in edge beta-strand E to Lys increased monomer stability, confirming the hypothesis that inward-pointing charged side chains on edge beta-strands are an important design feature to prevent beta-supersheet formation. Overall, the studies reveal that monomer-dimer transition is associated with a surprisingly large, physiologically relevant, IgSF domain rearrangement.

    Nishida, N., Walz, T. & Springer, T.A. Structural transitions of complement component C3 and its activation products. Proc Natl Acad Sci USA 103, 52, 19737-42 (2006).Abstract

    Complement sensitizes pathogens for phagocytosis and lysis. We use electron microscopy to examine the structural transitions in the activation of the pivotal protein in the complement pathway, C3. In the cleavage product C3b, the position of the thioester domain moves approximately 100 Angstrom, which becomes covalently coupled to antigenic surfaces. In the iC3b fragment, cleavage in an intervening domain creates a long flexible linker between the thioester domain and the macroglobulin domain ring of C3. Studies on two products of nucleophile addition to C3 reveal a structural intermediate in activation, and a final product, in which the anaphylatoxin domain has undergone a remarkable movement through the macroglobulin ring.

    Astrof, N.S., Salas, A., Shimaoka, M., Chen, J.F. & Springer, T.A. Importance of force linkage in mechanochemistry of adhesion receptors. Biochemistry 45, 50, 15020-8 (2006).Abstract

    The alpha subunit-inserted (I) domain of integrin alphaLbeta2 [lymphocyte function-associated antigen-1 (LFA-1)] binds to intercellular adhesion molecule-1 (ICAM-1). The C- and N-termini of the alpha I domain are near one another on the "lower" face, opposite the metal ion-dependent adhesion site (MIDAS) on the "upper face". In conversion to the open alpha I domain conformation, a 7 A downward, axial displacement of C-terminal helix alpha7 is allosterically linked to rearrangement of the MIDAS into its high-affinity conformation. Here, we test the hypothesis that when an applied force is appropriately linked to conformational change, the conformational change can stabilize adhesive interactions that resist the applied force. Integrin alpha I domains were anchored to the cell surface through their C- or N-termini using type I or II transmembrane domains, respectively. C-terminal but not N-terminal anchorage robustly supported cell rolling on ICAM-1 substrates in shear flow. In contrast, when the alphaL I domain was mutationally stabilized in the open conformation with a disulfide bond, it mediated comparable levels of firm adhesion with type I and type II membrane anchors. To exclude other effects as the source of differential adhesion, these results were replicated using alpha I domains conjugated through the N- or C-terminus to polystyrene microspheres. Our results demonstrate a mechanical feedback system for regulating the strength of an adhesive bond. A review of crystal structures of integrin alpha and beta subunit I domains and selectins in high- and low-affinity conformations demonstrates a common mechanochemical design in which biologically applied tensile force stabilizes the more extended, high-affinity conformation.

    Yang, W., et al. A small molecule agonist of an integrin, aLb2. J Biol Chem. 281, 49, 37904-12 (2006).Abstract

    The binding of integrin alpha(L)beta(2) to its ligand intercellular adhesion molecule-1 is required for immune responses and leukocyte trafficking. Small molecule antagonists of alpha(L)beta(2) are under intense investigation as potential anti-inflammatory drugs. We describe for the first time a small molecule integrin agonist. A previously described alpha/beta I allosteric inhibitor, compound 4, functions as an agonist of alpha(L)beta(2) in Ca(2+) and Mg(2+)and as an antagonist in Mn(2+). We have characterized the mechanism of activation and its competitive and noncompetitive inhibition by different compounds. Although it stimulates ligand binding, compound 4 nonetheless inhibits lymphocyte transendothelial migration. Agonism by compound 4 results in accumulation of alpha(L)beta(2) in the uropod, extreme uropod elongation, and defective de-adhesion. Small molecule integrin agonists open up novel therapeutic possibilities.

    Springer, T.A. Complement and the multifaceted functions of VWA and integrin I domains. Structure 14, 11, 1611-6 (2006).Abstract

    The recent crystal structure of complement protein component C2a reveals an interface between its VWA and serine protease domains that could not exist in the zymogen C2. The implied change in VWA domain conformation between C2 and C2a differs from that described for other VWA domains, including the I domains in integrins. Here, the remarkable diversity in both conformational regulation and ligand binding among VWA domains that function in complement, hemostasis, cell adhesion, anthrax toxin binding, vesicle transport, DNA break repair, and RNA quality control is reviewed. Finally, implications for metastability of complement convertases are discussed.

    Shimaoka, M., et al. AL-57, a ligand-mimetic antibody to integrin LFA-1, reveals chemokine-induced affinity upregulation in lymphocytes. Proc Natl Acad Sci USA 103, 38, 13991-13996 (2006).Abstract

    Affinity of integrin lymphocyte function-associated antigen 1 (LFA-1) is enhanced by conformational changes from the low-affinity closed form to the high-affinity (HA) open form of the ligand-binding inserted (I) domain as shown by work with purified I domains. However, affinity up-regulation of LFA-1 on the cell surface by physiological agonists such as chemokines has yet to be demonstrated by monovalent reagents. We characterize a mAb, AL-57 (activated LFA-1 clone 57), that has been developed by phage display that selectively targets the HA open conformation of the LFA-1 I domain. AL-57 discriminates among low-affinity, intermediate-affinity, and HA states of LFA-1. Furthermore, AL-57 functions as a ligand mimetic that binds only upon activation and requires Mg2+ for binding. Compared with the natural ligand intercellular adhesion molecule-1, AL-57 shows a tighter binding to the open I domain and a 250-fold slower off rate. Monovalent Fab AL-57 demonstrates affinity increases on a subset (approximately 10%) of lymphocyte cell surface LFA-1 molecules upon stimulation with CXCL-12 (CXC chemokine ligand 12). Affinity up-regulation correlates with global conformational changes of LFA-1 to the extended form. Affinity increase stimulated by CXCL-12 is transient and peaks 2 to 5 min after stimulation.

    Nishida, N., et al. Activation of leukocyte β2 integrins by conversion from bent to extended conformations. Immunity 25, 4, 583-594 (2006).Abstract

    We used negative stain electron microscopy (EM) to examine the conformational changes in the ectodomains required for activation of the leukocyte integrins alpha(X)beta(2) and alpha(L)beta(2). They transitioned between a bent conformation and two extended conformations in which the headpiece was in either a closed or an open state. Extended integrins exhibited marked flexibility at the alpha subunit genu and between integrin epidermal growth factor-like (I-EGF) domains 1 and 2. A clasp to mimic juxtamembrane association between the integrin alpha and beta subunits stabilized the bent conformation strongly for alpha(X)beta(2) and less so for alpha(L)beta(2). A small molecule allosteric antagonist induced the extended, open headpiece conformation. A Fab known to activate beta(2) integrins on leukocytes induced extension, and a Fab reporter of activation bound only after extension had been induced. The results establish an intimate relationship between extension of beta(2) integrins and their activation in immune responses and leukocyte trafficking.

    Salas, A., Shimaoka, M., Phan, U., Kim, M. & Springer, T.A. Transition from rolling to firm adhesion can be mimicked by extension of integrin αLβ2 in an intermediate-affinity state. J Biol Chem. 281, 16, 10876-10882 (2006).Abstract

    AlphaLbeta2 affinity for intercellular adhesion molecule-1 (ICAM-1) is regulated by the conformation of the alphaL I domain, which is in turn controlled by the conformation and orientation of other adjacent domains. Additionally, overall integrin conformation (bent versus straightened) influences the orientation of the I domain and access to its ligands, influencing adhesive efficiency. The open or high affinity I domain conformation supports strong adhesion, whereas the closed, low affinity conformation mediates weak interactions or rolling. We have previously suggested that alphaLbeta2 can also exist on the cell surface in an intermediate affinity state. Here we have studied the adhesive properties of integrin alphaLbeta2 containing mutant I domains with intermediate affinities for ICAM-1. In an overall bent conformation, the intermediate affinity state of alphaLbeta2 is hardly detected by conventional adhesion assays, but robust adhesion is seen when an extended conformation is induced by a small molecule alpha/beta I allosteric antagonist. Intermediate affinity alphaLbeta2 supports more stable rolling than wild-type alphaLbeta2 under shear conditions. Moreover, antagonist-induced extension transforms rolling adhesion into firm adhesion in a manner reminiscent of chemokine activation of integrin alphaLbeta2. These findings suggest the relevance of intermediate affinity states of alphaLbeta2 to the transition between inactive and active states and demonstrate the importance of both I domain affinity and overall integrin conformation for cell adhesion.

    Swers, J.S., Widom, A., Phan, U., Springer, T.A. & Wittrup, K.D. A high affinity human antibody antagonist of P-selectin mediated rolling. Biochem. Biophys. Res. Commun. 350, 3, 508-513 (2006).Abstract

    We have characterized the IgG form of a previously isolated and engineered single-chain Fv (scFv), named RR2r3s4-1, that binds to human PSGL-1. This fully human IgG was determined to have a Kd of 1.8+/-0.7 nM by fluorescence quenching titration. It better inhibits P-selectin-PSGL-1 interactions than a commercially available murine monoclonal antibody KPL1 and better inhibits neutrophil rolling than KPL1. Thus, RR2r3s4-1 is the most effective antibody at inhibiting P-selectin-PSGL-1 interactions known. Specificity analysis reveals that RR2r3s4-1 does not cross react with murine PSGL-1 and thus requires more than tyrosine sulfate for binding to human PSGL-1. This evidence demonstrates the therapeutic potential of this antibody as a potent anti-inflammatory therapeutic.

    Jin, M., et al. Directed evolution to probe protein allostery and integrin I domains of 200,000-fold higher affinity. Proc Natl Acad Sci USA 103, 15, 5758-5763 (2006).Abstract

    Understanding allostery may serve to both elucidate mechanisms of protein regulation and provide a basis for engineering active mutants. Herein we describe directed evolution applied to the integrin alpha(L) inserted domain for studying allostery by using a yeast surface display system. Many hot spots for activation are identified, and some single mutants exhibit remarkable increases of 10,000-fold in affinity for a physiological ligand, intercellular adhesion molecule-1. The location of activating mutations traces out an allosteric interface in the interior of the inserted domain that connects the ligand binding site to the alpha7-helix, which communicates allostery to neighboring domains in intact integrins. The combination of two activating mutations (F265S/F292G) leads to an increase of 200,000-fold in affinity to intercellular adhesion molecule-1. The F265S/F292G mutant is potent in antagonizing lymphocyte function-associated antigen 1-dependent lymphocyte adhesion, aggregation, and transmigration.

    Luo, B.-H. & Springer, T.A. Integrin structures and conformational signaling. Curr Opin Cell Biol. 18, 5, 579-586 (2006).Abstract

    Integrins are cell adhesion molecules that play critical roles in development, wound healing, hemostasis, immunity and cancer. Advances in the past two years have shed light on the structural basis for integrin regulation and signaling, especially on how global conformational changes between bent and extended conformations relate to the inter-domain and intra-domain shape shifting that regulates affinity for ligand. The downward movements of the C-terminal helices of the alpha I and beta I domains and the swing-out of the hybrid domain play pivotal roles in integrin conformational signaling. Experiments have also shown that integrins transmit bidirectional signals across the plasma membrane by coupling extracellular conformational change with an unclasping and separation of the alpha and beta transmembrane and cytoplasmic domains.

    Huang, L., et al. Identification and characterization of a human monoclonal antagonistic antibody AL-57 that preferentially binds the high-affinity form of lymphocyte function-associated antigen-1. J Leukoc Biol. 80, 4, 905-914 (2006).Abstract

    LFA-1 (alpha(L)beta(2)) mediates cell-cell and cell-extracellular matrix adhesions essential for immune and inflammatory responses. One critical mechanism regulating LFA-1 activity is the conformational change of the ligand-binding alpha(L) I domain from low-affinity (LA), closed form, to the high-affinity (HA), open form. Most known integrin antagonists bind both forms. Antagonists specific for the HA alpha(L) I domain have not been described. Here, we report the identification and characterization of a human antibody AL-57, which binds to the alpha(L) I domain in a HA but not LA conformation. AL-57 was discovered by selection from a human Fab-displaying library using a locked-open HA I domain as target. AL-57 Fab-phage bound HA I domain-expressing K562 cells (HA cells) in a Mg(2+)-dependent manner. AL-57 IgG also bound HA cells and PBMCs, activated by Mg(2+)/EGTA, PMA, or DTT. The binding profile of AL-57 IgG on PBMCs was the same as that of ICAM-1, the main ligand of LFA-1. In contrast, an anti-alpha(L) murine mAb MHM24 did not distinguish between the HA and LA forms. Moreover, AL-57 IgG blocked ICAM-1 binding to HA cells with a potency greater than MHM24. It also inhibited ICAM-1 binding to PBMCs, blocked adhesion of HA cells to keratinocytes, and inhibited PHA-induced lymphocyte proliferation with potencies comparable with MHM24. These results indicate that specifically targeting the HA I domain is sufficient to inhibit LFA-1-mediated, adhesive functions. AL-57 represents a therapeutic candidate for treatment of inflammatory and autoimmune diseases.

    Phan, U.T., Waldron, T.T. & Springer, T.A. Remodeling of the lectin/EGF-like interface in P- and L-selectin increases adhesiveness and shear resistance under hydrodynamic force. Nat. Immunol. 7, 8, 883-889 (2006).Abstract

    Crystal structures of the lectin and epidermal growth factor (EGF)-like domains of P-selectin show 'bent' and 'extended' conformations. An extended conformation would be 'favored' by forces exerted on a selectin bound at one end to a ligand and at the other end to a cell experiencing hydrodynamic drag forces. To determine whether the extended conformation has higher affinity for ligand, we introduced an N-glycosylation site to 'wedge open' the interface between the lectin and EGF-like domains of P-selectin. This alteration increased the affinity of P-selectin for its ligand P-selectin glycoprotein 1 (PSGL-1) and thereby the strength of P-selectin-mediated rolling adhesion. Similarly, an asparagine-to-glycine substitution in the lectin-EGF-like domain interface of L-selectin enhanced rolling adhesion under shear flow. Our results demonstrate that force, by 'favoring' an extended selectin conformation, can strengthen selectin-ligand bonds.

Pages