Publications by Year: 2006

2006
Springer, T.A. Complement and the multifaceted functions of VWA and integrin I domains. Structure 14, 11, 1611-6 (2006).Abstract

The recent crystal structure of complement protein component C2a reveals an interface between its VWA and serine protease domains that could not exist in the zymogen C2. The implied change in VWA domain conformation between C2 and C2a differs from that described for other VWA domains, including the I domains in integrins. Here, the remarkable diversity in both conformational regulation and ligand binding among VWA domains that function in complement, hemostasis, cell adhesion, anthrax toxin binding, vesicle transport, DNA break repair, and RNA quality control is reviewed. Finally, implications for metastability of complement convertases are discussed.

Springer_2006_17957.pdf
Astrof, N.S., Salas, A., Shimaoka, M., Chen, J.F. & Springer, T.A. Importance of force linkage in mechanochemistry of adhesion receptors. Biochemistry 45, 50, 15020-8 (2006).Abstract

The alpha subunit-inserted (I) domain of integrin alphaLbeta2 [lymphocyte function-associated antigen-1 (LFA-1)] binds to intercellular adhesion molecule-1 (ICAM-1). The C- and N-termini of the alpha I domain are near one another on the "lower" face, opposite the metal ion-dependent adhesion site (MIDAS) on the "upper face". In conversion to the open alpha I domain conformation, a 7 A downward, axial displacement of C-terminal helix alpha7 is allosterically linked to rearrangement of the MIDAS into its high-affinity conformation. Here, we test the hypothesis that when an applied force is appropriately linked to conformational change, the conformational change can stabilize adhesive interactions that resist the applied force. Integrin alpha I domains were anchored to the cell surface through their C- or N-termini using type I or II transmembrane domains, respectively. C-terminal but not N-terminal anchorage robustly supported cell rolling on ICAM-1 substrates in shear flow. In contrast, when the alphaL I domain was mutationally stabilized in the open conformation with a disulfide bond, it mediated comparable levels of firm adhesion with type I and type II membrane anchors. To exclude other effects as the source of differential adhesion, these results were replicated using alpha I domains conjugated through the N- or C-terminus to polystyrene microspheres. Our results demonstrate a mechanical feedback system for regulating the strength of an adhesive bond. A review of crystal structures of integrin alpha and beta subunit I domains and selectins in high- and low-affinity conformations demonstrates a common mechanochemical design in which biologically applied tensile force stabilizes the more extended, high-affinity conformation.

Astrof_2006_17931.pdf
Yang, W., et al. A small molecule agonist of an integrin, aLb2. J Biol Chem. 281, 49, 37904-12 (2006).Abstract

The binding of integrin alpha(L)beta(2) to its ligand intercellular adhesion molecule-1 is required for immune responses and leukocyte trafficking. Small molecule antagonists of alpha(L)beta(2) are under intense investigation as potential anti-inflammatory drugs. We describe for the first time a small molecule integrin agonist. A previously described alpha/beta I allosteric inhibitor, compound 4, functions as an agonist of alpha(L)beta(2) in Ca(2+) and Mg(2+)and as an antagonist in Mn(2+). We have characterized the mechanism of activation and its competitive and noncompetitive inhibition by different compounds. Although it stimulates ligand binding, compound 4 nonetheless inhibits lymphocyte transendothelial migration. Agonism by compound 4 results in accumulation of alpha(L)beta(2) in the uropod, extreme uropod elongation, and defective de-adhesion. Small molecule integrin agonists open up novel therapeutic possibilities.

Yang_2006_17931.pdf
Nishida, N., Walz, T. & Springer, T.A. Structural transitions of complement component C3 and its activation products. Proc Natl Acad Sci USA 103, 52, 19737-42 (2006).Abstract

Complement sensitizes pathogens for phagocytosis and lysis. We use electron microscopy to examine the structural transitions in the activation of the pivotal protein in the complement pathway, C3. In the cleavage product C3b, the position of the thioester domain moves approximately 100 Angstrom, which becomes covalently coupled to antigenic surfaces. In the iC3b fragment, cleavage in an intervening domain creates a long flexible linker between the thioester domain and the macroglobulin domain ring of C3. Studies on two products of nucleophile addition to C3 reveal a structural intermediate in activation, and a final product, in which the anaphylatoxin domain has undergone a remarkable movement through the macroglobulin ring.

Nishida_2006Suppl_17977.pdf
Nishida, N., et al. Activation of leukocyte β2 integrins by conversion from bent to extended conformations. Immunity 25, 4, 583-594 (2006).Abstract

We used negative stain electron microscopy (EM) to examine the conformational changes in the ectodomains required for activation of the leukocyte integrins alpha(X)beta(2) and alpha(L)beta(2). They transitioned between a bent conformation and two extended conformations in which the headpiece was in either a closed or an open state. Extended integrins exhibited marked flexibility at the alpha subunit genu and between integrin epidermal growth factor-like (I-EGF) domains 1 and 2. A clasp to mimic juxtamembrane association between the integrin alpha and beta subunits stabilized the bent conformation strongly for alpha(X)beta(2) and less so for alpha(L)beta(2). A small molecule allosteric antagonist induced the extended, open headpiece conformation. A Fab known to activate beta(2) integrins on leukocytes induced extension, and a Fab reporter of activation bound only after extension had been induced. The results establish an intimate relationship between extension of beta(2) integrins and their activation in immune responses and leukocyte trafficking.

Nishida_2006Suppl_17753.pdf
Shimaoka, M., et al. AL-57, a ligand-mimetic antibody to integrin LFA-1, reveals chemokine-induced affinity upregulation in lymphocytes. Proc Natl Acad Sci USA 103, 38, 13991-13996 (2006).Abstract

Affinity of integrin lymphocyte function-associated antigen 1 (LFA-1) is enhanced by conformational changes from the low-affinity closed form to the high-affinity (HA) open form of the ligand-binding inserted (I) domain as shown by work with purified I domains. However, affinity up-regulation of LFA-1 on the cell surface by physiological agonists such as chemokines has yet to be demonstrated by monovalent reagents. We characterize a mAb, AL-57 (activated LFA-1 clone 57), that has been developed by phage display that selectively targets the HA open conformation of the LFA-1 I domain. AL-57 discriminates among low-affinity, intermediate-affinity, and HA states of LFA-1. Furthermore, AL-57 functions as a ligand mimetic that binds only upon activation and requires Mg2+ for binding. Compared with the natural ligand intercellular adhesion molecule-1, AL-57 shows a tighter binding to the open I domain and a 250-fold slower off rate. Monovalent Fab AL-57 demonstrates affinity increases on a subset (approximately 10%) of lymphocyte cell surface LFA-1 molecules upon stimulation with CXCL-12 (CXC chemokine ligand 12). Affinity up-regulation correlates with global conformational changes of LFA-1 to the extended form. Affinity increase stimulated by CXCL-12 is transient and peaks 2 to 5 min after stimulation.

Shimaoka_2006_17912.pdf
Jin, M., et al. Directed evolution to probe protein allostery and integrin I domains of 200,000-fold higher affinity. Proc Natl Acad Sci USA 103, 15, 5758-5763 (2006).Abstract

Understanding allostery may serve to both elucidate mechanisms of protein regulation and provide a basis for engineering active mutants. Herein we describe directed evolution applied to the integrin alpha(L) inserted domain for studying allostery by using a yeast surface display system. Many hot spots for activation are identified, and some single mutants exhibit remarkable increases of 10,000-fold in affinity for a physiological ligand, intercellular adhesion molecule-1. The location of activating mutations traces out an allosteric interface in the interior of the inserted domain that connects the ligand binding site to the alpha7-helix, which communicates allostery to neighboring domains in intact integrins. The combination of two activating mutations (F265S/F292G) leads to an increase of 200,000-fold in affinity to intercellular adhesion molecule-1. The F265S/F292G mutant is potent in antagonizing lymphocyte function-associated antigen 1-dependent lymphocyte adhesion, aggregation, and transmigration.

Jin_2006_16933.pdf
Swers, J.S., Widom, A., Phan, U., Springer, T.A. & Wittrup, K.D. A high affinity human antibody antagonist of P-selectin mediated rolling. Biochem. Biophys. Res. Commun. 350, 3, 508-513 (2006).Abstract

We have characterized the IgG form of a previously isolated and engineered single-chain Fv (scFv), named RR2r3s4-1, that binds to human PSGL-1. This fully human IgG was determined to have a Kd of 1.8+/-0.7 nM by fluorescence quenching titration. It better inhibits P-selectin-PSGL-1 interactions than a commercially available murine monoclonal antibody KPL1 and better inhibits neutrophil rolling than KPL1. Thus, RR2r3s4-1 is the most effective antibody at inhibiting P-selectin-PSGL-1 interactions known. Specificity analysis reveals that RR2r3s4-1 does not cross react with murine PSGL-1 and thus requires more than tyrosine sulfate for binding to human PSGL-1. This evidence demonstrates the therapeutic potential of this antibody as a potent anti-inflammatory therapeutic.

Swers_2006_17979.pdf
Huang, L., et al. Identification and characterization of a human monoclonal antagonistic antibody AL-57 that preferentially binds the high-affinity form of lymphocyte function-associated antigen-1. J Leukoc Biol. 80, 4, 905-914 (2006).Abstract

LFA-1 (alpha(L)beta(2)) mediates cell-cell and cell-extracellular matrix adhesions essential for immune and inflammatory responses. One critical mechanism regulating LFA-1 activity is the conformational change of the ligand-binding alpha(L) I domain from low-affinity (LA), closed form, to the high-affinity (HA), open form. Most known integrin antagonists bind both forms. Antagonists specific for the HA alpha(L) I domain have not been described. Here, we report the identification and characterization of a human antibody AL-57, which binds to the alpha(L) I domain in a HA but not LA conformation. AL-57 was discovered by selection from a human Fab-displaying library using a locked-open HA I domain as target. AL-57 Fab-phage bound HA I domain-expressing K562 cells (HA cells) in a Mg(2+)-dependent manner. AL-57 IgG also bound HA cells and PBMCs, activated by Mg(2+)/EGTA, PMA, or DTT. The binding profile of AL-57 IgG on PBMCs was the same as that of ICAM-1, the main ligand of LFA-1. In contrast, an anti-alpha(L) murine mAb MHM24 did not distinguish between the HA and LA forms. Moreover, AL-57 IgG blocked ICAM-1 binding to HA cells with a potency greater than MHM24. It also inhibited ICAM-1 binding to PBMCs, blocked adhesion of HA cells to keratinocytes, and inhibited PHA-induced lymphocyte proliferation with potencies comparable with MHM24. These results indicate that specifically targeting the HA I domain is sufficient to inhibit LFA-1-mediated, adhesive functions. AL-57 represents a therapeutic candidate for treatment of inflammatory and autoimmune diseases.

Huang_2006_17599.pdf
Luo, B.-H. & Springer, T.A. Integrin structures and conformational signaling. Curr Opin Cell Biol. 18, 5, 579-586 (2006).Abstract

Integrins are cell adhesion molecules that play critical roles in development, wound healing, hemostasis, immunity and cancer. Advances in the past two years have shed light on the structural basis for integrin regulation and signaling, especially on how global conformational changes between bent and extended conformations relate to the inter-domain and intra-domain shape shifting that regulates affinity for ligand. The downward movements of the C-terminal helices of the alpha I and beta I domains and the swing-out of the hybrid domain play pivotal roles in integrin conformational signaling. Experiments have also shown that integrins transmit bidirectional signals across the plasma membrane by coupling extracellular conformational change with an unclasping and separation of the alpha and beta transmembrane and cytoplasmic domains.

Luo_2006_17756.pdf
Song, G., et al. Rational design of ICAM-1 variants for antagonizing integrin LFA-1-dependent adhesion. J Biol Chem. 281, 8, 5042-5049 (2006).Abstract

The interaction between integrin lymphocyte function-associated antigen-1 (LFA-1) and its ligand intercellular adhesion molecule-1 (ICAM-1) is critical in immunological and inflammatory reactions but, like other adhesive interactions, is of low affinity. Here, multiple rational design methods were used to engineer ICAM-1 mutants with enhanced affinity for LFA-1. Five amino acid substitutions 1) enhance the hydrophobicity and packing of residues surrounding Glu-34 of ICAM-1, which coordinates to a Mg2+ in the LFA-1 I domain, and 2) alter associations at the edges of the binding interface. The affinity of the most improved ICAM-1 mutant for intermediate- and high-affinity LFA-1 I domains was increased by 19-fold and 22-fold, respectively, relative to wild type. Moreover, potency was similarly enhanced for inhibition of LFA-1-dependent ligand binding and cell adhesion. Thus, rational design can be used to engineer novel adhesion molecules with high monomeric affinity; furthermore, the ICAM-1 mutant holds promise for targeting LFA-1-ICAM-1 interaction for biological studies and therapeutic purposes.

Song_2006Suppl_17441.pdf
Chen, J.F., Yang, W., Kim, M., Carman, C.V. & Springer, T.A. Regulation of outside-in signaling by the β2 I domain of integrin αLβ2. Proc Natl Acad Sci USA 103, 35, 13062-13067 (2006).Abstract

The adhesiveness of integrin alpha(L)beta(2) is modulated by divalent cations. We mutated three metal ion-binding sites in the beta(2) I domain. The metal ion-dependent adhesion site (MIDAS) and the ligand-induced metal-binding site are required for ligand binding and sufficient for synergism between Ca(2+) and Mg(2+). Adjacent to MIDAS (ADMIDAS) mutants are constitutively active but remain bent, with poor exposure of a beta(2) stalk region epitope. Fluorescence resonance energy transfer between fluorescent protein-fused alpha(L) and beta(2) cytoplasmic domains showed that ADMIDAS mutation abrogated ligand binding-induced spatial separation of cytoplasmic domains. Furthermore, ADMIDAS mutation abolished spreading on ligand-bearing substrates. Thus, beta(2) I domain metal ion-binding sites regulate alpha(L) I domain affinity, and the ADMIDAS is required for outside-in signaling.

Chen_2006_17857.pdf
Phan, U.T., Waldron, T.T. & Springer, T.A. Remodeling of the lectin/EGF-like interface in P- and L-selectin increases adhesiveness and shear resistance under hydrodynamic force. Nat. Immunol. 7, 8, 883-889 (2006).Abstract

Crystal structures of the lectin and epidermal growth factor (EGF)-like domains of P-selectin show 'bent' and 'extended' conformations. An extended conformation would be 'favored' by forces exerted on a selectin bound at one end to a ligand and at the other end to a cell experiencing hydrodynamic drag forces. To determine whether the extended conformation has higher affinity for ligand, we introduced an N-glycosylation site to 'wedge open' the interface between the lectin and EGF-like domains of P-selectin. This alteration increased the affinity of P-selectin for its ligand P-selectin glycoprotein 1 (PSGL-1) and thereby the strength of P-selectin-mediated rolling adhesion. Similarly, an asparagine-to-glycine substitution in the lectin-EGF-like domain interface of L-selectin enhanced rolling adhesion under shear flow. Our results demonstrate that force, by 'favoring' an extended selectin conformation, can strengthen selectin-ligand bonds.

Phan_2006Suppl_17620.pdf
Salas, A., Shimaoka, M., Phan, U., Kim, M. & Springer, T.A. Transition from rolling to firm adhesion can be mimicked by extension of integrin αLβ2 in an intermediate-affinity state. J Biol Chem. 281, 16, 10876-10882 (2006).Abstract

AlphaLbeta2 affinity for intercellular adhesion molecule-1 (ICAM-1) is regulated by the conformation of the alphaL I domain, which is in turn controlled by the conformation and orientation of other adjacent domains. Additionally, overall integrin conformation (bent versus straightened) influences the orientation of the I domain and access to its ligands, influencing adhesive efficiency. The open or high affinity I domain conformation supports strong adhesion, whereas the closed, low affinity conformation mediates weak interactions or rolling. We have previously suggested that alphaLbeta2 can also exist on the cell surface in an intermediate affinity state. Here we have studied the adhesive properties of integrin alphaLbeta2 containing mutant I domains with intermediate affinities for ICAM-1. In an overall bent conformation, the intermediate affinity state of alphaLbeta2 is hardly detected by conventional adhesion assays, but robust adhesion is seen when an extended conformation is induced by a small molecule alpha/beta I allosteric antagonist. Intermediate affinity alphaLbeta2 supports more stable rolling than wild-type alphaLbeta2 under shear conditions. Moreover, antagonist-induced extension transforms rolling adhesion into firm adhesion in a manner reminiscent of chemokine activation of integrin alphaLbeta2. These findings suggest the relevance of intermediate affinity states of alphaLbeta2 to the transition between inactive and active states and demonstrate the importance of both I domain affinity and overall integrin conformation for cell adhesion.

Salas_2006_17442.pdf