Publications by Year: 2011

Shi, M., et al. Latent TGF-β structure and activation. Nature 474, 7351, 343-9 (2011).Abstract

Transforming growth factor (TGF)-β is stored in the extracellular matrix as a latent complex with its prodomain. Activation of TGF-β1 requires the binding of α(v) integrin to an RGD sequence in the prodomain and exertion of force on this domain, which is held in the extracellular matrix by latent TGF-β binding proteins. Crystals of dimeric porcine proTGF-β1 reveal a ring-shaped complex, a novel fold for the prodomain, and show how the prodomain shields the growth factor from recognition by receptors and alters its conformation. Complex formation between α(v)β(6) integrin and the prodomain is insufficient for TGF-β1 release. Force-dependent activation requires unfastening of a 'straitjacket' that encircles each growth-factor monomer at a position that can be locked by a disulphide bond. Sequences of all 33 TGF-β family members indicate a similar prodomain fold. The structure provides insights into the regulation of a family of growth and differentiation factors of fundamental importance in morphogenesis and homeostasis.

Zhou, Y.F., et al. A pH-regulated dimeric bouquet in the structure of von Willebrand factor. EMBO J. 30, 19, 4098-111 (2011).Abstract

At the acidic pH of the trans-Golgi and Weibel-Palade bodies (WPBs), but not at the alkaline pH of secretion, the C-terminal ∼1350 residues of von Willebrand factor (VWF) zip up into an elongated, dimeric bouquet. Six small domains visualized here for the first time between the D4 and cystine-knot domains form a stem. The A2, A3, and D4 domains form a raceme with three pairs of opposed, large, flower-like domains. N-terminal VWF domains mediate helical tubule formation in WPBs and template N-terminal disulphide linkage between VWF dimers, to form ultralong VWF concatamers. The dimensions we measure in VWF at pH 6.2 and 7.4, and the distance between tubules in nascent WPB, suggest that dimeric bouquets are essential for correct VWF dimer incorporation into growing tubules and to prevent crosslinking between neighbouring tubules. Further insights into the structure of the domains and flexible segments in VWF provide an overall view of VWF structure important for understanding both the biogenesis of ultralong concatamers at acidic pH and flow-regulated changes in concatamer conformation in plasma at alkaline pH that trigger hemostasis.

Schürpf, T. & Springer, T.A. Regulation of integrin affinity on cell surfaces. EMBO J. 30, 23, 4712-27 (2011).Abstract

Lymphocyte activation triggers adhesiveness of lymphocyte function-associated antigen-1 (LFA-1; integrin α(L)β(2)) for intercellular adhesion molecules (ICAMs) on endothelia or antigen-presenting cells. Whether the activation signal, after transmission through multiple domains to the ligand-binding αI domain, results in affinity changes for ligand has been hotly debated. Here, we present the first comprehensive measurements of LFA-1 affinities on T lymphocytes for ICAM-1 under a broad array of activating conditions. Only a modest increase in affinity for soluble ligand was detected after activation by chemokine or T-cell receptor ligation, conditions that primed LFA-1 and robustly induced lymphocyte adhesion to ICAM-1 substrates. By stabilizing well-defined LFA-1 conformations by Fab, we demonstrate the absolute requirement of the open LFA-1 headpiece for adhesiveness and high affinity. Interaction of primed LFA-1 with immobilized but not soluble ICAM-1 triggers energy-dependent affinity maturation of LFA-1 to an adhesive, high affinity state. Our results lend support to the traction or translational motion dependence of integrin activation.

Mi, L.-Z., Lu, C., Nishida, N., Walz, T. & Springer, T.A. Simultaneous visualization of the extracellular and cytoplasmic domains of the epidermal growth factor receptor. Nat Struct Mol Biol. 18, 9, 984-9 (2011).Abstract

To our knowledge, no structural study to date has characterized, in an intact receptor, the coupling of conformational change in extracellular domains through a single-pass transmembrane domain to conformational change in cytoplasmic domains. Here we examine such coupling, and its unexpected complexity, using nearly full-length epidermal growth factor receptor (EGFR) and negative-stain EM. The liganded, dimeric EGFR ectodomain can couple both to putatively active, asymmetrically associated kinase dimers and to putatively inactive, symmetrically associated kinase dimers and monomers. Inhibitors that stabilize the active or inactive conformation of the kinase active site, as well as mutations in the kinase dimer interface and a juxtamembrane phosphorylation site, shift the equilibrium among the three kinase association states. This coupling of one conformation of an activated receptor ectodomain to multiple kinase-domain arrangements reveals previously unanticipated complexity in transmembrane signaling and facilitates regulation of receptor function in the juxtamembrane and cytoplasmic environments.

Springer, T.A. Biology and physics of von Willebrand factor concatamers. J Thromb Haemost. 9, Suppl 1, 130-143 (2011).Abstract

Structural specialisations enable von Willebrand factor (VWF) to assemble during biosynthesis into helical tubules in Weibel-Palade bodies (WPB). Specialisations include a pH-regulated dimeric bouquet formed by the C-terminal half of VWF and helical assembly guided by the N-terminal half that templates inter-dimer disulphide bridges. Orderly assembly and storage of ultra-long concatamersin helical tubules, without crosslinking of neighboring tubules, enables unfurling during secretion without entanglement. Length regulation occurs post-secretion, by hydrodynamic force-regulated unfolding of the VWF A2 domain, and its cleavage by the plasma protease ADAMTS13 (a disintegrin and metalloprotease with a thrombospondin type 1 motif, member 13). VWF is longest at its site of secretion, where its haemostatic function is most important. Moreover, elongational hydrodynamic forces on VWF are strongest just where needed, when bound to the vessel wall, or in elongational flow in the circulation at sites of vessel rupture or vasoconstriction in haemostasis. Elongational forces regulate haemostasis by activating binding of the A1 domain to platelet GPIbα, and over longer time periods, regulate VWF length by unfolding of the A2 domain for cleavage by ADAMTS13. Recent structures of A2 and single molecule measurements of A2 unfolding and cleavage by ADAMTS13 illuminate the mechanisms of VWF length regulation. Single molecule studies on the A1-GPIb receptor-ligand bond demonstrate a specialised flex-bond that enhances resistance to the strong hydrodynamic forces experienced at sites of haemorrhage.

© 2011 International Society on Thrombosis and Haemostasis.

Weitz-Schmidt, G., Schurpf, T. & Springer, T.A. The C-terminal αI domain linker as a critical structural element in the conformational activation of αI integrins. J Biol Chem. 286, 49, 42115-22 (2011).Abstract

The activation of α/β heterodimeric integrins is the result of highly coordinated rearrangements within both subunits. The molecular interactions between the two subunits, however, remain to be characterized. In this study we use the integrin α(L)β(2) to investigate the functional role of the C-linker polypeptide, which connects the C-terminal end of the inserted (I) domain with the β-propeller domain on the α subunit and is located at the interface with the βI domain of the β chain. We demonstrate that shortening of the C-linker by eight or more amino acids results in constitutively active α(L)β(2), in which the αI domain is no longer responsive to the regulation by the βI domain. Despite this inter-subunit uncoupling, both I domains individually remain sensitive to intra-subunit conformational changes induced by allosteric modulators. Interestingly, the length and not the sequence of the C-linker appears to be critical for its functionality in the α/β inter-subunit communication. Using two monoclonal antibodies (R7.1 and CBR LFA-1/1) we further demonstrate that shortening of the C-linker results in the gradual loss of combinational epitopes that require both the αI and β-propeller domains for full reactivity. Taken together, our findings highlight the role of the C-linker as a spring-like element which allows relaxation of the αI domain in the resting state and controlled tension of the αI domain during activation, exerted by the β chain.

Eng, E., Smagghe, B., Walz, T. & Springer, T.A. Intact αIIbβ3 extends after activation measured by solution X-ray scattering and electron microscopy. J Biol Chem 286, 40, 35218-35226 (2011).Abstract

Integrins are bidirectional signaling molecules on the cell surface that have fundamental roles in regulating cell behavior and contribute to cell migration and adhesion. Understanding of the mechanism of integrin signaling and activation has been advanced with truncated ectodomain preparations; however, the nature of conformational change in the full-length intact integrin molecule remains an active area of research. Here we used small angle x-ray scattering and electron microscopy to study detergent-solubilized, intact platelet integrin α(IIb)β(3). In the resting state, the intact α(IIb)β(3) adopted a compact, bent conformation. Upon activation with Mn(2+), the average integrin extension increased. Further activation by addition of ligand led to stabilization of the extended state and opening of the headpiece. The observed extension and conformational rearrangement upon activation are consistent with the extension and headpiece opening model of integrin activation

Zhou, M., et al. A novel calcium-binding site of von Willebrand factor A2 domain regulates its cleavage by ADAMTS13. Blood 117, 4623-31 (2011).Abstract

The proteolysis of VWF by ADAMTS13 is an essential step in the regulation of its hemostatic and thrombogenic potential. The cleavage occurs at strand beta4 in the structural core of the A2 domain of VWF, so unfolding of the A2 domain is a prerequisite for cleavage. In the present study, we present the crystal structure of an engineered A2 domain that exhibits a significant difference in the alpha3-beta4 loop compared with the previously reported structure of wild-type A2. Intriguingly, a metal ion was detected at a site formed mainly by the C-terminal region of the alpha3-beta4 loop that was later identified as Ca(2+) after various biophysical and biochemical studies. Force-probe molecular dynamic simulations of a modeled structure of the wild-type A2 featuring the discovered Ca(2+)-binding site revealed that an increase in force was needed to unfold strand beta4 when Ca(2+) was bound. Cleavage assays consistently demonstrated that Ca(2+) binding stabilized the A2 domain and impeded its unfolding, and consequently protected it from cleavage by ADAMTS13. We have revealed a novel Ca(2+)-binding site at the A2 domain of VWF and demonstrated a relationship between Ca(2+) and force in the regulation of VWF and primary hemostasis.

Wang, W., Zhu, J., Springer, T.A. & Luo, B.H. Tests of integrin transmembrane domain homo-oligomerization during integrin ligand binding and signaling. J Biol Chem 286, 1860-7 (2011).Abstract

Integrin transmembrane (TM) and/or cytoplasmic domains play a critical role in integrin bidirectional signaling. Although it has been shown that TM and/or cytoplasmic alpha and beta domains associate in the resting state and separation of these domains is required for both inside-out and outside-in signaling, the role of TM homomeric association remains elusive. Formation of TM homo-oligomers was observed in micelles and bacterial membranes previously, and it has been proposed that homomeric association is important for integrin activation and clustering. This study addresses whether integrin TM domains form homo-oligomers in mammalian cell membranes using cysteine scanning mutagenesis. Our results show that TM homomeric interaction does not occur before or after soluble ligand binding or during inside-out activation. In addition, even though the cysteine mutants and the heterodimeric disulfide-bounded mutant could form clusters after adhering to immobilized ligand, the integrin TM domains do not form homo-oligomers, suggesting that integrin TM homomeric association is not critical for integrin clustering or outside-in signaling. Therefore, integrin TM homo-oligomerization is not required for integrin activation, ligand binding, or signaling.