Publications

2015
Force-induced on-rate switching and modulation by mutations in gain-of-function von Willebrand diseases.
Kim, J., Hudson, N.E. & Springer, T.A. Force-induced on-rate switching and modulation by mutations in gain-of-function von Willebrand diseases. Proc Natl Acad Sci USA 112, 15, 4648-53 (2015).Abstract

Mutations in the ultralong vascular protein von Willebrand factor (VWF) cause the common human bleeding disorder, von Willebranddisease (VWD). The A1 domain in VWF binds to glycoprotein Ibα (GPIbα) on platelets, in a reaction triggered, in part, by alterations in flow during bleeding. Gain-of-function mutations in A1 and GPIbα in VWD suggest conformational regulation. We report that force application switches A1 and/or GPIbα to a second state with faster on-rate, providing a mechanism for activating VWF binding to platelets. Switching occurs near 10 pN, a force that also induces a state of the receptor-ligand complex with slower off-rate. Force greatly increases the effects of VWD mutations, explaining pathophysiology. Conversion of single molecule kon (s(-1)) to bulk phase kon (s(-1)M(-1)) and the kon and koff values extrapolated to zero force for the low-force pathways show remarkably good agreement with bulk-phase measurements.

 

pnas-2015-kim.pdf
Structure of bone morphogenetic protein 9 procomplex
Mi, L.-Z., et al. Structure of bone morphogenetic protein 9 procomplex. Proc Natl Acad Sci USA 112, 3710-5 (2015).Abstract

Bone morphogenetic proteins (BMPs) belong to the TGF-β family, whose 33 members regulate multiple aspects of morphogenesis. TGF-β family members are secreted as procomplexes containing a small growth factor dimer associated with two larger prodomains. As isolated procomplexes, some members are latent, whereas most are active; what determines these differences is unknown. Here, studies on pro-BMP structures and binding to receptors lead to insights into mechanisms that regulate latency in the TGF-β family and into the functions of their highly divergent prodomains. The observed open-armed, nonlatent conformation of pro-BMP9 and pro-BMP7 contrasts with the cross-armed, latent conformation of pro-TGF-β1. Despite markedly different arm orientations in pro-BMP and pro-TGF-β, the arm domain of the prodomain can similarly associate with the growth factor, whereas prodomain elements N- and C-terminal to the arm associate differently with the growth factor and may compete with one another to regulate latency and stepwise displacement by type I and II receptors. Sequence conservation suggests that pro-BMP9 can adopt both cross-armed and open-armed conformations. We propose that interactors in the matrix stabilize a cross-armed pro-BMP conformation and regulate transition between cross-armed, latent and open-armed, nonlatent pro-BMP conformations.

pnas-2015-mi-3710-5.pdf
2014
Kollman, C.S., et al. Application of encoded library technology (ELT) to a protein-protein interaction target: discovery of a potent class of integrin lymphocyte function-associated antigen 1 (LFA-1) antagonists. Bioorg Med Chem. 22, 7, 2353-65 (2014).Abstract

The inhibition of protein-protein interactions remains a challenge for traditional small molecule drug discovery. Here we describe the use of DNA-encoded library technology for the discovery of small molecules that are potent inhibitors of the interaction betweenlymphocyte function-associated antigen 1 and its ligand intercellular adhesion molecule 1. A DNA-encoded library with a potential complexity of 4.1 billion compounds was exposed to the I-domain of the target protein and the bound ligands were affinity selected, yielding an enriched small-molecule hit family. Compounds representing this family were synthesized without their DNA encoding moiety and found to inhibit the lymphocyte function-associated antigen 1/intercellular adhesion molecule-1 interaction with submicromolar potency in both ELISA and cell adhesion assays. Re-synthesized compounds conjugated to DNA or a fluorophore were demonstrated to bind to cells expressing the target protein.

Copyright © 2014 Elsevier Ltd. All rights reserved.

Krollman_2014.pdf
Zhou, Y.F. & Springer, T.A. Highly reinforced structure of a C-terminal dimerization domain in von Willebrand factor. Blood 123, 12, 1785-93 (2014).Abstract

The C-terminal cystine knot (CK) (CTCK) domain in von Willebrand factor (VWF) mediates dimerization of proVWF in the endoplasmic reticulum and is essential for long multimers required for hemostatic function. The CTCK dimer crystal structure revealshighly elongated monomers with 2 β-ribbons and 4 intra-chain disulfides, including 3 in the CK. Dimerization buries an extensive interface of 1500 Å(2) corresponding to 32% of the surface of each monomer and forms a super β-sheet and 3 inter-chain disulfides. The shape, dimensions, and N-terminal connections of the crystal structure agree perfectly with previous electron microscopic images of VWF dimeric bouquets with the CTCK dimer forming a down-curved base. The dimer interface is suited to resist hydrodynamic force and disulfide reduction. CKs in each monomer flank the 3 inter-chain disulfides, and their presence in β-structures with dense backbone hydrogen bonds creates a rigid, highly crosslinked interface. The structure reveals the basis for vonWillebrand disease phenotypes and the fold and disulfide linkages for CTCK domains in diverse protein families involved in barrier function, eye and inner ear development, insect coagulation and innate immunity, axon guidance, and signaling in extracellular matrices.

Zhou_-_2014.pdf
W, X. & TA, S. Metal ion and ligand binding of integrin α5β1. Proc Natl Acad Sci USA 111, 50, 17863-8 (2014).Abstract

Integrin α5β1 binds to an Arg-Gly-Asp (RGD) motif in its ligand fibronectin. We report high-resolution crystal structures of a four-domain α5β1 headpiece fragment, alone or with RGD peptides soaked into crystals, and RGD peptide affinity measurements. The headpiece crystallizes in a closed conformation essentially identical to that seen previously for α5β1 complexed with a Fab that allosterically inhibits ligand binding by stabilizing the closed conformation. Soaking experiments show that binding of cyclic RGD peptide with 20-fold higher affinity than a linear RGD peptide induces conformational change in the β1-subunit βI domain to a state that is intermediate between closed (low affinity) and open (high affinity). In contrast, binding of a linear RGD peptide induces no shape shifting. However, linear peptide binding induces shape shifting when Ca(2+) is depleted during soaking. Ca(2+) bound to the adjacent to metal ion-dependent adhesion site (ADMIDAS), at the locus of shape shifting, moves and decreases in occupancy, correlating with an increase in affinity for RGD measured when Ca(2+) is depleted. The results directly demonstrate that Ca(2+)binding to the ADMIDAS stabilizes integrins in the low-affinity, closed conformation. Comparisons in affinity between four-domain and six-domain headpiece constructs suggest that flexible integrin leg domains contribute to conformational equilibria. High-resolution views of the hybrid domain interface with the plexin-semaphorin-integrin (PSI) domain in different orientations show a ball-and-socket joint with a hybrid domain Arg side chain that rocks in a PSI domain socket lined with carbonyl oxygens.

17863full.pdf
Blenner, M.A., Dong, X. & Springer, T.A. Structural basis of regulation of von Willebrand factor binding to glycoprotein Ib. J Biol Chem. 289, 9, 5565-79 (2014).Abstract

Activation by elongational flow of von Willebrand factor (VWF) is critical for primary hemostasis. Mutations causing type 2B vonWillebrand disease (VWD), platelet-type VWD (PT-VWD), and tensile force each increase affinity of the VWF A1 domain and plateletglycoprotein Ibα (GPIbα) for one another; however, the structural basis for these observations remains elusive. Directed evolution was used to discover a further gain-of-function mutation in A1 that shifts the long range disulfide bond by one residue. We solved multiple crystal structures of this mutant A1 and A1 containing two VWD mutations complexed with GPIbα containing two PT-VWD mutations. We observed a gained interaction between A1 and the central leucine-rich repeats (LRRs) of GPIbα, previously shown to be important at high shear stress, and verified its importance mutationally. These findings suggest that structural changes, including central GPIbα LRR-A1 contact, contribute to VWF affinity regulation. Among the mutant complexes, variation in contacts and poor complementarity between the GPIbα β-finger and the region of A1 harboring VWD mutations lead us to hypothesize that the structures are on a pathway to, but have not yet reached, a force-induced super high affinity state.

J_Biol_Chem-2014-Blenner-5565-79.pdf
Dong, X., Hudson, N.E., Lu, C. & Springer, T.A. Structural determinants of integrin β-subunit specificity for latent TGF-β. Nat Struct Mol Biol. 21, 12, 1091-6 (2014).Abstract

Eight integrin α-β heterodimers recognize ligands with an Arg-Gly-Asp (RGD) motif. However, the structural mechanism by which integrins differentiate among extracellular proteins with RGD motifs is not understood. Here, crystal structures, mutations and peptide-affinity measurements show that αVβ6 binds with high affinity to a RGDLXXL/I motif within the prodomains of TGF-β1 and TGF-β3. The LXXL/I motif forms an amphipathic α-helix that binds in a hydrophobic pocket in the β6 subunit. Elucidation of the basis for ligand binding specificity by the integrin β subunit reveals contributions by three different βI-domain loops, which we designatespecificity-determining loops (SDLs) 1, 2 and 3. Variation in a pair of single key residues in SDL1 and SDL3 correlates with the variation of the entire β subunit in integrin evolution, thus suggesting a paradigmatic role in overall β-subunit function.

Nat_Struc-2014.pdf
Song, G. & Springer, T.A. Structures of the Toxoplasma gliding motility adhesin. Proc Natl Acad Sci USA 111, 13, 4862-7 (2014).Abstract

Micronemal protein 2 (MIC2) is the key adhesin that supports gliding motility and host cell invasion by Toxoplasma gondii. With a von Willebrand factor A (VWA) domain and six thrombospondin repeat domains (TSR1-6) in its ectodomain, MIC2 connects to the parasite actomyosin system through its cytoplasmic tail. MIC2-associated protein (M2AP) binds noncovalently to the MIC2 ectodomain. MIC2 and M2AP are stored in micronemes as proforms. We find that the MIC2-M2AP ectodomain complex is a highly elongated 1:1 monomer with M2AP bound to the TSR6 domain. Crystal structures of N-terminal fragments containing the VWA and TSR1 domains for proMIC2 and MIC2 reveal a closed conformation of the VWA domain and how it associates with the TSR1 domain. A long, proline-rich, disulfide-bonded pigtail loop in TSR1 overlaps the VWA domain. Mannose α-C-linked to Trp-276 in TSR1 has an unusual (1)C4 chair conformation. The MIC2 VWA domain includes a mobile α5-helix and a 22-residue disordered region containing two disulfide bonds in place of an α6-helix. A hydrophobic residue in the prodomain binds to a pocket adjacent to the α7-helix that pistons in opening of the VWA domain to a putative high-affinity state.

PNAS-2014-Song-4862-7.pdf
Springer, T.A. von Willebrand Factor, Jedi Knight of the Bloodstream. Blood 124, 9, 1412-25 (2014).Abstract

When blood vessels are cut, the forces in the bloodstream increase and change character. The dark side of these forces causes hemorrhage and death. However, von Willebrand factor (VWF), with help from our circulatory system and platelets, harnesses the same forces to form a hemostatic plug. Force and VWF function are so closely intertwined that, like members of the Jedi Order in the movie Star Wars who learn to use "the Force" to do good, VWF may be considered the Jedi knight of the bloodstream. The long length of VWF enables responsiveness to flow. The shape of VWF is predicted to alter from irregularly coiled to extended thread-like in the transition from shear to elongational flow at sites of hemostasis and thrombosis. Elongational force propagated through the length of VWF in its thread-like shape exposes its monomers for multimeric binding to platelets and subendothelium and likely also increases affinity of the A1 domain for platelets. Specialized domains concatenate and compact VWF during biosynthesis. A2 domain unfolding by hydrodynamic force enables postsecretion regulation of VWF length. Mutations in VWF in von Willebranddisease contribute to and are illuminated by VWF biology. I attempt to integrate classic studies on the physiology of hemostatic plug formation into modern molecular understanding, and point out what remains to be learned.

© 2014 by The American Society of Hematology.

Springer_2014_jedi.pdf
2013
Zhu, J., Zhu, J. & Springer, T.A. Complete integrin headpiece opening in eight steps. J Cell Biol 201, 7, 1053-68 (2013).Abstract

Carefully soaking crystals with Arg-Gly-Asp (RGD) peptides, we captured eight distinct RGD-bound conformations of the αIIbβ3integrin headpiece. Starting from the closed βI domain conformation, we saw six intermediate βI conformations and finally the fully open βI with the hybrid domain swung out in the crystal lattice. The β1-α1 backbone that hydrogen bonds to the Asp side chain of RGD was the first element to move followed by adjacent to metal ion-dependent adhesion site Ca(2+), α1 helix, α1' helix, β6-α7 loop, α7 helix, and hybrid domain. We define in atomic detail how conformational change was transmitted over long distances in integrins, 40 Å from the ligand binding site to the opposite end of the βI domain and 80 Å to the far end of the hybrid domain. During these movements, RGD slid in its binding groove toward αIIb, and its Arg side chain became ordered. RGD concentration requirements in soaking suggested a >200-fold higher affinity after opening. The thermodynamic cycle shows how higher affinity pays the energetic cost of opening.

Zhu2013.pdf
Yu, Y., et al. Domain 1 of mucosal addressin cell adhesion molecule has an I1-set fold and a flexible integrin-binding loop. J Biol Chem. 288, 9, 6284-94 (2013).Abstract

Mucosal addressin cell adhesion molecule (MAdCAM) binds integrin α4β7. Their interaction directs lymphocyte homing to mucosa-associated lymphoid tissues. The interaction between the two immunoglobulin superfamily (IgSF) domains of MAdCAM and integrin α4β7 is unusual in its ability to mediate either rolling adhesion or firm adhesion of lymphocytes on vascular surfaces. We determined four crystal structures of the IgSF domains of MAdCAM to test for unusual structural features that might correlate with this functional diversity. Higher resolution 1.7- and 1.4-Å structures of the IgSF domains of MAdCAM in a previously described crystal lattice revealed two alternative conformations of the integrin-binding loop, which were deformed by large lattice contacts. New crystal forms in the presence of two different Fabs to MAdCAM demonstrate a shift in IgSF domain topology from the I2- to I1-set, with a switch ofintegrin-binding loop from CC' to CD. The I1-set fold and CD loop appear biologically relevant. The different conformations seen in crystal structures suggest that the integrin-binding loop of MAdCAM is inherently flexible. This contrasts with rigidity of the corresponding loops in vascular cell adhesion molecule, intercellular adhesion molecule (ICAM)-1, ICAM-2, ICAM-3, and ICAM-5 and may reflect a specialization of MAdCAM to mediate both rolling and firm adhesion by binding to different α4β7 integrin conformations.

J_Biol_Chem-2013-Yu.pdf
Yu, Y., Schürpf, T. & Springer, T.A. How Natalizumab Binds and Antagonizes α4 Integrins. J Biol Chem. 288, 45, 32314-25 (2013).Abstract

Natalizumab antibody to α4-integrins is used in therapy of multiple sclerosis and Crohn's disease. A crystal structure of the Fab bound to an α4 integrin β-propeller and thigh domain fragment shows that natalizumab recognizes human-mouse differences on the circumference of the β-propeller domain. The epitope is adjacent to but outside of a ligand-binding groove formed at the interface with the β-subunit βI domain and shows no difference in structure when bound to Fab. Competition between Fab and the ligand vascular cell adhesion molecule (VCAM) for binding to cell surface α4β1 shows noncompetitive antagonism. In agreement, VCAM docking models suggest that binding of domain 1 of VCAM to α4-integrins is unimpeded by the Fab, and that bound Fab requires a change in orientation between domains 1 and 2 of VCAM for binding to α4β1. Mapping of species-specific differences onto α4β1 and α4β7 shows that their ligand-binding sites are highly conserved. Skewing away from these conserved regions of the epitopes recognized by current therapeutic function-blocking antibodies has resulted in previously unanticipated mechanisms of action.

j._biol._chem.-2013-yu.pdf
Sen, M., Yuki, K. & Springer, T.A. An internal ligand-bound, metastable state of a leukocyte integrin, αXβ2. J Cell Biol 203, 4, 629-42 (2013).Abstract

How is massive conformational change in integrins achieved on a rapid timescale? We report crystal structures of a metastable, putative transition state of integrin αXβ2. The αXβ2 ectodomain is bent; however, a lattice contact stabilizes its ligand-binding αI domain in a high affinity, open conformation. Much of the αI α7 helix unwinds, loses contact with the αI domain, and reshapes to form an internal ligand that binds to the interface between the β propeller and βI domains. Lift-off of the αI domain above this platform enables a range of extensional and rotational motions without precedent in allosteric machines. Movements of secondary structure elements in the β2 βI domain occur in an order different than in β3 integrins, showing that integrin β subunits can be specialized to assume different intermediate states between closed and open. Mutations demonstrate that the structure trapped here is metastable and can enable rapid equilibration between bent and extended-open integrin conformations and up-regulation of leukocyte adhesiveness.

J_Cell_Biol-2013-Sen-629-42.pdf
Xu, A.J. & Springer, T.A. Mechanisms by which von Willebrand disease mutations destabilize the A2 domain. J Biol Chem. 288, 9, 6317-24 (2013).Abstract

von Willebrand Factor (VWF) is an ultralong, concatameric, and adhesive glycoprotein. On short time scales, adhesiveness for platelets is activated by elongation of VWF by altered hydrodynamics at sites of hemostasis. Over longer time scales, the length of VWF is regulated by ADAMTS13 (a disintegrin and metalloprotease with a thrombospondin type 1 motif, member 13), cleavage by which in the VWF A2 domain is dependent on elongational force. Patients with von Willebrand disease type 2A present with increased bleeding due to mutations within the VWF A2 domain that enhance cleavage. We tested using temperature and force the hypothesis that von Willebrand disease mutations disrupt A2 force sensing by destabilizing the folded state. Mutations R1597W, M1528V, and E1638K reduced A2 thermal stability by 10-18 °C. M1528V and E1638K showed a marked further decrease in stability upon calcium removal. In contrast, R1597W, which resides within the A2 calcium-binding loop, exhibited similar stability in the presence and absence of calcium. Using single molecule optical tweezers and R1597W, we measured the force dependence of unfolding and refolding kinetics. In the presence of calcium, the R1597W mutation slowed the rate of refolding but had no effect on unfolding. The three mutations highlight the calcium-binding loop (R1597W), the hydrophobic core around the vicinal disulfide (M1528V), and hydrogen bonds to the α4-less loop (E1638K), as structural features critically important to the function of A2 as a force sensor in regulating thrombogenic activity in the vasculature.

J_Biol_Chem-2013-Xu.pdf
R, M., et al. Release of cellular tension signals self-restorative ventral lamellipodia to heal barrier micro-wounds. J Cell Biol 201, 3, 449-65 (2013).Abstract

Basic mechanisms by which cellular barriers sense and respond to integrity disruptions remain poorly understood. Despite its tenuous structure and constitutive exposure to disruptive strains, the vascular endothelium exhibits robust barrier function. We show that in response to micrometer-scale disruptions induced by transmigrating leukocytes, endothelial cells generate unique ventrallamellipodia that propagate via integrins toward and across these "micro-wounds" to close them. This novel actin remodeling activity progressively healed multiple micro-wounds in succession and changed direction during this process. Mechanical probe-induced micro-wounding of both endothelia and epithelia suggests that ventral lamellipodia formed as a response to force imbalance and specifically loss of isometric tensionVentral lamellipodia were enriched in the Rac1 effectors cortactin, IQGAP, and p47Phox and exhibited localized production of hydrogen peroxide. Together with Apr2/3, these were functionally required for effective micro-wound healing. We propose that barrier disruptions are detected as local release of isometric tension/force unloading, which is directly coupled to reactive oxygen species-dependent self-restorative actin remodeling dynamics.

J_Cell_Biol-2013-Martinelli-449-65.pdf
2012
Xu, A. & Springer, T.A. Calcium Stabilizes the von Willebrand Factor A2 Domain by Promoting Folding. Proc Natl Acad Sci USA 109, 10, 3742-7 (2012).Abstract

Von Willebrand factor (VWF) is a large, multimeric plasma glycoprotein that critically mediates hemostasis at sites of vascular injury. Very large VWF multimers have the greatest thrombogenic activity, which is attenuated by cleavage in the A2 domain by the metalloproteinase ADAMTS13. ADAMTS13 proteolysis requires mechanical force to expose the scissile bond and is regulated by a calcium-binding site within A2. In this study, we characterized the interaction between VWF A2 and calcium by examining the effect of calcium on VWF A2 stability and mechanical unfolding and refolding. Isothermal calorimetry yielded a calcium binding K(d) = 3.8 ± 1.0 μM and reversible thermal denaturation showed that 5 mM calcium stabilized the unfolding transition from 56.7 ± 0.1 to 69.1 ± 0.1 °C. Using optical tweezers to apply tensile force to single domains, we found that calcium did not affect VWF A2 unfolding, but rather enhanced refolding kinetics fivefold, resulting in a 0.9 kcal/mol stabilization in the folding activation energy in the presence of calcium. Taken together, our data demonstrate that VWF binds calcium at physiologic calcium concentrations and that calcium stabilizes VWF A2 by accelerating refolding.

Xu_2012Supp.pdf
Wang, R., et al. GARP regulates the bioavailability and activation of TGF-β. Mol Biol Cell. 23, 6, 1129-39 (2012).Abstract

Glycoprotein-A repetitions predominant protein (GARP) associates with latent transforming growth factor-β (proTGFβ) on the surface of T regulatory cells and platelets; however, whether GARP functions in latent TGFβ activation and the structural basis of coassociation remain unknown. We find that Cys-192 and Cys-331 of GARP disulfide link to the TGFβ1 prodomain and that GARP with C192A and C331A mutations can also noncovalently associate with proTGFβ1. Noncovalent association is sufficiently strong for GARP to outcompete latent TGFβ-binding protein for binding to proTGFβ1. Association between GARP and proTGFβ1 prevents the secretion of TGFβ1. Integrin α(V)β(6) and to a lesser extent α(V)β(8) are able to activate TGFβ from the GARP-proTGFβ1 complex. Activation requires the RGD motif of latent TGFβ, disulfide linkage between GARP and latent TGFβ, and membrane association of GARP. Our results show that GARP is a latent TGFβ-binding protein that functions in regulating the bioavailability and activation of TGFβ.

Wang_2012_20133Supp.pdf
Springer, T.A. & Dustin, M.L. Integrin Inside-Out Signaling and the Immunological Synapse. Curr Opin Cell Biol. 24, 1, 107-15 (2012).Abstract

Integrins dynamically equilibrate between three conformational states on cell surfaces. A bent conformation has a closed headpiece. Two extended conformations contain either a closed or an open headpiece. Headpiece opening involves hybrid domain swing-out and a 70 Å separation at the integrin knees, which is conveyed by allostery from the hybrid-proximal end of the βI domain to a 3 Å rearrangement of the ligand-binding site at the opposite end of the βI domain. Both bent-closed and extended-closed integrins have low affinity, whereas extended-open integrin affinity is 10(3) to 10(4) higher. Integrin-mediated adhesion requires the extended-open conformation, which in physiological contexts is stabilized by post-ligand binding events. Integrins thus discriminate between substrate-bound and soluble ligands. Analysis of LFA-1-ICAM-1 interactions in the immunological synapse suggests that bond lifetimes are on the order of seconds, which is consistent with high affinity interactions subjected to cytoskeletal forces that increase the dissociation rate. LFA-1 βI domain antagonists abrogate function in the immunological synapse, further supporting a critical role for high affinity LFA-1.
Copyright © 2011 Elsevier Ltd. All rights reserved.

Springer_2012.pdf
Lu, C., Mi, L.-Z., Schurpf, T., Walz, T. & Springer, T.A. Mechanisms for kinase-mediated dimerization of the EGF receptor. J Biol Chem. 287, 45, 38244-53 (2012).Abstract

We study a mechanism by which dimerization of the EGF receptor (EGFR) cytoplasmic domain is transmitted to the ectodomain. Therapeutic and other small molecule antagonists to the kinase domain that stabilize its active conformation, but not those that stabilize an inactive conformation, stabilize ectodomain dimerization. Inhibitor-induced dimerization requires an asymmetric kinase domain interface associated with activation. EGF and kinase inhibitors stimulate formation of identical dimer interfaces in the EGFR transmembrane domain, as shown by disulfide cross-linking. Disulfide cross-linking at an interface in domain IV in the ectodomain was also stimulated similarly; however, EGF but not inhibitors stimulated cross-linking in domain II. Inhibitors similarly induced noncovalent dimerization in nearly full-length, detergent-solubilized EGFR as shown by gel filtration. EGFR ectodomain deletion resulted in spontaneous dimerization, whereas deletion of exons 2-7, in which extracellular domains III and IV are retained, did not. In EM, kinase inhibitor-induced dimers lacked any well defined orientation between the ectodomain monomers. Fab of the therapeutic antibody cetuximab to domain III confirmed a variable position and orientation of this domain in inhibitor-induced dimers but suggested that the C termini of domain IV of the two monomers were in close proximity, consistent with dimerization in the transmembrane domains. The results provide insights into the relative energetics of intracellular and extracellular dimerization in EGFR and have significance for physiologic dimerization through the asymmetric kinase interface, bidirectional signal transmission in EGFR, and mechanism of action of therapeutics.

Lu_2012.pdf
Y., Y., et al. Structural specializations of α4β7, an Integrin that Mediates Rolling Adhesion. J Cell Biol. 196, 1, 131-46 (2012).Abstract

The lymphocyte homing receptor integrin α(4)β(7) is unusual for its ability to mediate both rolling and firm adhesion. α(4)β(1) and α(4)β(7) are targeted by therapeutics approved for multiple sclerosis and Crohn's disease. Here, we show by electron microscopy and crystallography how two therapeutic Fabs, a small molecule (RO0505376), and mucosal adhesion molecule-1 (MAdCAM-1) bind α(4)β(7). A long binding groove at the α(4)-β(7) interface for immunoglobulin superfamily domains differs in shape from integrin pockets that bind Arg-Gly-Asp motifs. RO0505376 mimics an Ile/Leu-Asp motif in α(4) ligands, and orients differently from Arg-Gly-Asp mimics. A novel auxiliary residue at the metal ion-dependent adhesion site in α(4)β(7) is essential for binding to MAdCAM-1 in Mg(2+) yet swings away when RO0505376 binds. A novel intermediate conformation of the α(4)β(7) headpiece binds MAdCAM-1 and supports rolling adhesion. Lack of induction of the open headpiece conformation by ligand binding enables rolling adhesion to persist until integrin activation is signaled.

Yu_2012Supp.pdf

Pages