Lu, C., Shimaoka, M., Salas, A. & Springer, T.A. The binding sites for competitive antagonistic, allosteric antagonistic, and agonistic antibodies to the I domain of integrin LFA-1. J. Immunol. 173, 6, 3972-3978 (2004).Abstract

We explore the binding sites for mAbs to the alpha I domain of the integrin alphaLbeta2 that can competitively inhibit, allosterically inhibit, or activate binding to the ligand ICAM-1. Ten mAbs, some of them clinically important, were mapped to species-specific residues. The results are interpreted with independent structures of the alphaL I domain determined in seven different crystal lattices and in solution, and which are present in three conformational states that differ in affinity for ligand. Six mAbs bind to adjacent regions of the beta1-alpha1 and alpha3-alpha4 loops, which show only small (mean, 0.8 angstroms; maximum, 1.8 angstroms) displacements among the eight I domain structures. Proximity to the ligand binding site and to noncontacting portions of the ICAM-1 molecule explains competitive inhibition by these mAbs. Three mAbs bind to a segment of seven residues in the beta5-alpha6 loop and alpha6 helix, in similar proximity to the ligand binding site, but on the side opposite from the beta1-alpha1/alpha3-alpha4 epitopes, and far from noncontacting portions of ICAM-1. These residues show large displacements among the eight structures in response to lattice contacts (mean, 3.6 angstroms; maximum, 9.4 angstroms), and movement of a buried Phe in the beta5-alpha6 loop is partially correlated with affinity change at the ligand binding site. Together with a lack of proximity to noncontacting portions of ICAM-1, these observations explain variation among this group of mAbs, which can either act as competitive or allosteric antagonists. One agonistic mAb binds distant from the ligand binding site of the I domain, to residues that show little movement (mean, 0.5 angstroms; maximum, 1.0 angstroms). Agonism by this mAb is thus likely to result from altering the orientation of the I domain with respect to other domains within an intact integrin alphaLbeta2 heterodimer.
Copyright 2004 The American Association of Immunologists, Inc.

Culi, J., Springer, T.A. & Mann, R.S. Boca-dependent assembly of β-propeller/EGF modules in low-density lipoprotein receptor proteins. EMBO J. 23, 6, 1372-1380 (2004).Abstract

The extracellular portions of cell surface receptor proteins are often comprised of independently folding protein domains. As they are translated into the endoplasmic reticulum (ER), some of these domains require protein chaperones to assist in their folding. Members of the low-density lipoprotein receptor (LDLR) family require the chaperone called Boca in Drosophila or its ortholog, Mesoderm development, in the mouse. All LDLRs have at least one six-bladed beta-propeller domain, which is immediately followed by an epidermal growth factor (EGF) repeat. We show here that Boca is specifically required for the maturation of these beta-propeller/EGF modules through the secretory pathway, but is not required for other LDLR domains. Protein interaction data suggest that as LDLRs are translated into the ER, Boca binds to the beta-propeller. Subsequently, once the EGF repeat is translated, the beta-propeller/EGF module achieves a more mature state that has lower affinity for Boca. We also show that Boca-dependent beta-propeller/EGF modules are found not only throughout the LDLR family but also in the precursor to the mammalian EGF ligand.

Jin, M., Andricioaei, I. & Springer, T.A. Conversion between three conformational states of integrin I domains with a C-terminal pull spring studied with molecular dynamics. Structure 12, 12, 2137-2147 (2004).Abstract

We test with molecular dynamics the hypothesis that interdomain forces in integrins, simulated with a spring attached to the C-terminal alpha 7-helix of an integrin I domain, can allosterically stabilize alternative I domain conformations. Depending on the force applied and timecourse, in alpha(L) and alpha(M) I domains the beta 6-alpha 7 loop moves successively between three ratchet positions; i.e. from closed to intermediate, and then to open. More distal, linked alterations in MIDAS loops and metal coordination closely resemble those seen when the MIDAS becomes ligated. Simulations show that the intermediate state is populated over a wider range of forces for alpha(L) than alpha(M) I domains. Simulations with mutant I domains suggest that specific ratchet residues regulate conformational equilibria. Simulations with alpha(1) and alpha(2) I domains reveal a lack of the intermediate conformation, owing to Phe to Glu substitution at the second ratchet residue. The findings have important implications for biological regulation of integrin adhesiveness.

Xie, C., et al. The integrin α subunit leg extends at a Ca2+-dependent epitope in the thigh/genu interface upon activation. Proc Natl Acad Sci USA 101, 43, 15422-15427 (2004).Abstract

Two activation-dependent Abs to the integrin alphaL-subunit were used to study conformational rearrangement of alphaLbeta2 on the cell surface. Activation lowered the concentration of Ca2+ required for maximal expression of each epitope. Each Ab requires the Ca2+-binding loop in the integrin genu and nearby species-specific residues in the thigh domain. Key thigh residues are shielded from Ab in the bent integrin conformation by the alpha-subunit calf-1 domain and the nearby bent beta leg, suggesting that extension at the genu is required for epitope exposure. Activating stimuli and alpha/beta I-like small molecule antagonists demonstrate that exposure of epitopes in the integrin alpha- and beta-subunit legs is coordinate during integrin activation. A coordinating residue donated by the calf-1 domain is as important as Ca2+ for mAb binding. Together with inspection of the alphaV structure, this result suggests that the genu/calf-1 interface is maintained in integrin activation, and that extension occurs by a rearrangement at the thigh/genu interface.

Artoni, A., et al. Integrin β3 regions controlling binding of murine mAb 7E3: Implications for the mechanism of integrin αIIbβ3 activation. Proc Natl Acad Sci USA 101, 36, 13114-13120 (2004).Abstract

Abciximab, a derivative of the murine mAb 7E3, protects against ischemic complications of percutaneous coronary interventions by inhibiting ligand binding to the alphaIIbbeta3 receptor. In this study we identified regions on integrin beta3 that control 7E3 binding. Murine/human amino acid substitutions were created in two regions of the betaA domain that previous studies found to influence 7E3 binding: the C177-C184 loop and K125-N133. The T182N substitution and a K125Q mutation reduced 7E3 binding to human beta3 in complex with alphaIIb. The introduction of both the human C177-C184 region and human W129 into murine beta3 was necessary and sufficient to permit 7E3 binding to the human alphaIIb/murine beta3 complex. Although we cannot exclude allosteric effects, we propose that 7E3 binds between C177-C184 and W129, which are within 15 A of each other in the crystal structure and close to the beta3 metal ion-dependent adhesion site. We previously demonstrated that 7E3 binds more rapidly to activated than unactivated platelets. Because it has been proposed that alphaIIbbeta3 changes from a bent to an extended conformation upon activation, we hypothesized that 7E3 binds less well to the bent than the extended conformation. In support of this hypothesis we found that 7E3 bound less well to an alphaIIbbeta3 construct locked in a bent conformation, and unlocking the conformation restored 7E3 binding. Thus, our data are consistent with alphaIIbbeta3 existing in variably bent conformations in equilibrium with each other on unactivated platelets, and activation resulting in alphaIIbbeta3 adopting a more extended conformation.

Yang, W., Shimaoka, M., Salas, A., Takagi, J. & Springer, T.A. Inter-subunit signal transmission in integrins by a receptor-like interaction with a pull spring. Proc Natl Acad Sci USA 101, 9, 2906-2911 (2004).Abstract

The function of some multidomain proteins is regulated by interdomain communication. We use second-site suppressor cysteine mutations to test a hypothesis on how the inserted (I)-like domain in the integrin beta-subunit regulates ligand binding by the neighboring I domain in the integrin alpha-subunit [Huth, J. R., Olejniczak, E. T., Mendoza, R., Liang, H., Harris, E. A., et al. (2000) Proc. Natl. Acad. Sci. USA 97, 5231-5236; and Alonso, J. L., Essafi, M., Xiong, J. P., Stehle, T. & Arnaout, M. A. (2002) Curr. Biol. 12, R340-R342]. The hypothesis is that an interaction between the beta I-like metal ion-dependent adhesion site (MIDAS) and an intrinsic ligand in the linker following the alpha I domain, Glu-310, exerts a pull that activates the alpha I domain. Individual mutation of alpha(L) linker residue Glu-310 or beta(2) MIDAS residues Ala-210 or Tyr-115 to cysteine abolishes I domain activation, whereas the double mutation of alpha(L)-E310C with either beta(2)-A210C or beta(2)-Y115C forms a disulfide bond that constitutively activates ligand binding. The disulfide-bonded mutant is resistant to small molecule antagonists that bind to the beta I-like domain near its interface with the alpha I domain and inhibit communication between these domains but remains susceptible to small molecule antagonists that bind underneath the I domain alpha 7-helix and certain allosteric antagonistic antibodies. Thus, the alpha 7-helix and its linker are better modeled as a pull spring than a bell rope. The results suggest that alpha(L) residue Glu-310, which is universally conserved in all I domain-containing integrins, functions as an intrinsic ligand for the beta I-like domain, and that when integrins are activated, the beta I-like MIDAS binds to Glu-310, pulls the spring, and thereby activates the alpha I domain.

Luo, B.-H., Takagi, J. & Springer, T.A. Locking the β3 integrin I-like domain into high and low affinity conformations with disulfides. J. Biol. Chem. 279, 11, 10215-10221 (2004).Abstract

Although integrin alpha subunit I domains exist in multiple conformations, it is controversial whether integrin beta subunit I-like domains undergo structurally analogous movements of the alpha7-helix that are linked to affinity for ligand. Disulfide bonds were introduced into the beta(3) integrin I-like domain to lock its beta6-alpha7 loop and alpha7-helix in two distinct conformations. Soluble ligand binding, ligand mimetic mAb binding and cell adhesion studies showed that disulfide-bonded receptor alpha(IIb)beta(3)(T329C/A347C) was locked in a low affinity state, and dithiothreitol treatment restored the capability of being activated to high affinity binding; by contrast, disulfide-bonded alpha(IIb)beta(3)(V332C/M335C) was locked in a high affinity state. The results suggest that activation of the beta subunit I-like domain is analogous to that of the alpha subunit I domain, i.e. that axial movement in the C-terminal direction of the alpha7-helix is linked to rearrangement of the I-like domain metal ion-dependent adhesion site into a high affinity conformation.

Kim, M., Carman, C.V., Yang, W., Salas, A. & Springer, T.A. The primacy of affinity over clustering in regulation of adhesiveness of the integrin αLβ2. J. Cell Biol. 167, 6, 1241-1253 (2004).Abstract

Dynamic regulation of integrin adhesiveness is required for immune cell-cell interactions and leukocyte migration. Here, we investigate the relationship between cell adhesion and integrin microclustering as measured by fluorescence resonance energy transfer, and macroclustering as measured by high resolution fluorescence microscopy. Stimuli that activate adhesion through leukocyte function-associated molecule-1 (LFA-1) failed to alter clustering of LFA-1 in the absence of ligand. Binding of monomeric intercellular adhesion molecule-1 (ICAM-1) induced profound changes in the conformation of LFA-1 but did not alter clustering, whereas binding of ICAM-1 oligomers induced significant microclustering. Increased diffusivity in the membrane by cytoskeleton-disrupting agents was sufficient to drive adhesion in the absence of affinity modulation and was associated with a greater accumulation of LFA-1 to the zone of adhesion, but redistribution did not precede cell adhesion. Disruption of conformational communication within the extracellular domain of LFA-1 blocked adhesion stimulated by affinity-modulating agents, but not adhesion stimulated by cytoskeleton-disrupting agents. Thus, LFA-1 clustering does not precede ligand binding, and instead functions in adhesion strengthening after binding to multivalent ligands.

Chen, J.F., et al. The relative influence of metal ion binding sites in the I-like domain and the interface with the hybrid domain on rolling and firm adhesion by integrin α4β7. J. Biol. Chem. 279, 53, 55556-61 (2004).Abstract

We examined the effect of conformational change at the beta(7) I-like/hybrid domain interface on regulating the transition between rolling and firm adhesion by integrin alpha(4)beta(7). An N-glycosylation site was introduced into the I-like/hybrid domain interface to act as a wedge and to stabilize the open conformation of this interface and hence the open conformation of the alpha(4) beta(7) headpiece. Wild-type alpha(4)beta(7) mediates rolling adhesion in Ca(2+) and Ca(2+)/Mg(2+) but firm adhesion in Mg(2+) and Mn(2+). Stabilizing the open headpiece resulted in firm adhesion in all divalent cations. The interaction between metal binding sites in the I-like domain and the interface with the hybrid domain was examined in double mutants. Changes at these two sites can either counterbalance one another or be additive, emphasizing mutuality and the importance of multiple interfaces in integrin regulation. A double mutant with counterbalancing deactivating ligand-induced metal ion binding site (LIMBS) and activating wedge mutations could still be activated by Mn(2+), confirming the importance of the adjacent to metal ion-dependent adhesion site (ADMIDAS) in integrin activation by Mn(2+). Overall, the results demonstrate the importance of headpiece allostery in the conversion of rolling to firm adhesion.

Lafuente, E.M., et al. RIAM, an Ena/VASP and profilin ligand, interacts with Rap1-GTP and mediates Rap1-induced adhesion. Dev. Cell 7, 4, 585-595 (2004).Abstract

The small GTPase Rap1 induces integrin-mediated adhesion and changes in the actin cytoskeleton. The mechanisms that mediate these effects of Rap1 are poorly understood. We have identified RIAM as a Rap1-GTP-interacting adaptor molecule. RIAM defines a family of adaptor molecules that contain a RA-like (Ras association) domain, a PH (pleckstrin homology) domain, and various proline-rich motifs. RIAM also interacts with Profilin and Ena/VASP proteins, molecules that regulate actin dynamics. Overexpression of RIAM induced cell spreading and lamellipodia formation, changes that require actin polymerization. In contrast, RIAM knockdown cells had reduced content of polymerized actin. RIAM overexpression also induced integrin activation and cell adhesion. RIAM knockdown displaced Rap1-GTP from the plasma membrane and abrogated Rap1-induced adhesion. Thus, RIAM links Rap1 to integrin activation and plays a role in regulating actin dynamics.

Salas, A., et al. Rolling adhesion through an extended conformation of integrin αLβ2 and relation to αI and βI-like domain interaction. Immunity 20, 4, 393-406 (2004).Abstract

In vivo, beta(2) integrins and particularly alpha(L)beta(2) (LFA-1) robustly support firm adhesion of leukocytes, but can also cooperate with other molecules in supporting rolling adhesion. Strikingly, a small molecule alpha/beta I-like allosteric antagonist, XVA143, inhibits LFA-1-dependent firm adhesion, while at the same time it enhances adhesion in shear flow and rolling both in vitro and in vivo. XVA143 appears to induce the extended conformation of integrins as shown by increased activation epitope exposure. Fab to the beta(2) I-like domain converts firm adhesion to rolling adhesion, but does not enhance adhesion. Residue alpha(L)-Glu-310 in the linker following the I domain is critical for communication to the beta(2) I-like domain, rolling, integrin extension, and activation by Mn(2+) of firm adhesion. The results demonstrate the importance of integrin extension in rolling, and suggest that rolling and firm adhesion are mediated by extended conformations of alpha(L)beta(2) that differ in the affinity of the alpha(L) I domain for ICAM-1.

Luo, B.-H., Springer, T.A. & Takagi, J. A specific interface between integrin transmembrane helices and affinity for ligand. PLoS Biol. 2, 6, 776-786 (2004).Abstract

Conformational communication across the plasma membrane between the extracellular and intracellular domains of integrins is beginning to be defined by structural work on both domains. However, the role of the alpha and beta subunit transmembrane domains and the nature of signal transmission through these domains have been elusive. Disulfide bond scanning of the exofacial portions of the integrin alpha(IIbeta) and beta(3) transmembrane domains reveals a specific heterodimerization interface in the resting receptor. This interface is lost rather than rearranged upon activation of the receptor by cytoplasmic mutations of the alpha subunit that mimic physiologic inside-out activation, demonstrating a link between activation of the extracellular domain and lateral separation of transmembrane helices. Introduction of disulfide bridges to prevent or reverse separation abolishes the activating effect of cytoplasmic mutations, confirming transmembrane domain separation but not hinging or piston-like motions as the mechanism of transmembrane signaling by integrins.

Xiao, T., Takagi, J., Wang, J.-H., Coller, B.S. & Springer, T.A. Structural basis for allostery in integrins and binding of fibrinogen-mimetic therapeutics. Nature 432, 7013, 59-67 (2004).Abstract

Integrins are important adhesion receptors in all Metazoa that transmit conformational change bidirectionally across the membrane. Integrin alpha and beta subunits form a head and two long legs in the ectodomain and span the membrane. Here, we define with crystal structures the atomic basis for allosteric regulation of the conformation and affinity for ligand of the integrin ectodomain, and how fibrinogen-mimetic therapeutics bind to platelet integrin alpha(IIb)beta3. Allostery in the beta3 I domain alters three metal binding sites, associated loops and alpha1- and alpha7-helices. Piston-like displacement of the alpha7-helix causes a 62 degrees reorientation between the beta3 I and hybrid domains. Transmission through the rigidly connected plexin/semaphorin/integrin (PSI) domain in the upper beta3 leg causes a 70 A separation between the knees of the alpha and beta legs. Allostery in the head thus disrupts interaction between the legs in a previously described low-affinity bent integrin conformation, and leg extension positions the high-affinity head far above the cell surface.

Yang, Y., et al. Structural basis for dimerization of ICAM-1 on the cell surface. Mol. Cell 14, 2, 269-276 (2004).Abstract

We have determined the 3.0 A crystal structure of the three C-terminal domains 3-5 (D3-D5) of ICAM-1. Combined with the previously known N-terminal two-domain structure (D1D2), a model of an entire ICAM-1 extracellular fragment has been constructed. This model should represent a general architecture of other ICAM family members, particularly ICAM-3 and ICAM-5. The observed intimate dimerization interaction at D4 and a stiff D4-D5 stem-like architecture provide a good structural explanation for the existence of preformed ICAM-1 cis dimers on the cell membrane. Together with another dimerization interface at D1, a band-like one-dimensional linear cluster of ICAM-1 on an antigen-presenting cell (APC) surface can be envisioned, which might explain the formation of an immunological synapse between an activated T cell and APC which is critical for T cell receptor signaling.

Shimaoka, M. & Springer, T.A. Therapeutic antagonists and the conformational regulation of the β2 integrins. Current Topics in Medicinal Chemistry 4, 1485-1495 (2004).Abstract

Integrins are a structurally elaborate family of adhesion molecules that transmit signals bi-directionally across the plasma membrane by undergoing large-scale structural rearrangements. By regulating cell-cell and cell-matrix contacts, integrins participate in a wide range of biological processes, including development, tissue repair, angiogenesis, inflammation and haemostasis. From a therapeutic standpoint, integrins are probably the most important class of cell-adhesion receptors. Recent progress in the development of integrin antagonists has resulted in their clinical application and has shed new light on integrin biology. On the basis of their mechanism of action, small-molecule integrin antagonists fall into three different classes. Each of these classes affect the equilibria that relate integrin conformational states, but in different ways.

Springer, T.A. & Wang, J.-H. The three-dimensional structure of integrins and their ligands, and conformational regulation of cell adhesion. Adv. Prot. Chem. 68, 29-63 (2004).Abstract

Integrins are a structurally elaborate family of adhesion molecules that transmit signals bidirectionally across the plasma membrane by undergoing large-scale structural rearrangements. By regulating cell-cell and cell-matrix contacts, integrins participate in a wide-range of biological interactions including development, tissue repair, angiogenesis, inflammation and hemostasis. From a therapeutic standpoint, integrins are probably the most important class of cell adhesion receptors. Structural investigations on integrin-ligand interactions reveal remarkable features in molecular detail. These details include the atomic basis for divalent cation-dependent ligand binding and how conformational signals are propagated long distances from one domain to another between the cytoplasm and the extracellular ligand binding site that regulate affinity for ligand, and conversely, cytosolic signaling pathways.

Carman, C.V. & Springer, T.A. A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them. J. Cell Biol. 167, 2, 377-388 (2004).Abstract

The basic route and mechanisms for leukocyte migration across the endothelium remain poorly defined. We provide definitive evidence for transcellular (i.e., through individual endothelial cells) diapedesis in vitro and demonstrate that virtually all, both para- and transcellular, diapedesis occurs in the context of a novel "cuplike" transmigratory structure. This endothelial structure was comprised of highly intercellular adhesion molecule-1- and vascular cell adhesion molecule-1-enriched vertical microvilli-like projections that surrounded transmigrating leukocytes and drove redistribution of their integrins into linear tracks oriented parallel to the direction of diapedesis. Disruption of projections was highly correlated with inhibition of transmigration. These findings suggest a novel mechanism, the "transmigratory cup", by which the endothelium provides directional guidance to leukocytes for extravasation.

Kim, M., Carman, C.V. & Springer, T.A. Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science 301, 5640, 1720-1725 (2003).Abstract

Although critical for development, immunity, wound healing, and metastasis, integrins represent one of the few classes of plasma membrane receptors for which the basic signaling mechanism remains a mystery. We investigated cytoplasmic conformational changes in the integrin LFA-1 (alphaLbeta2) in living cells by measuring fluorescence resonance energy transfer between cyan fluorescent protein-fused and yellow fluorescent protein-fused alphaL and beta2 cytoplasmic domains. In the resting state these domains were close to each other, but underwent significant spatial separation upon either intracellular activation of integrin adhesiveness (inside-out signaling) or ligand binding (outside-in signaling). Thus, bidirectional integrin signaling is accomplished by coupling extracellular conformational changes to an unclasping and separation of the alpha and beta cytoplasmic domains, a distinctive mechanism for transmitting information across the plasma membrane.

Chen, J.F., Salas, A. & Springer, T.A. Bistable regulation of integrin adhesiveness by a bipolar metal ion cluster. Nat. Struct. Biol. 10, 12, 995-1001 (2003).Abstract

Integrin alpha(4)beta(7) mediates rolling adhesion in Ca(2+) and Ca(2+) + Mg(2+), and firm adhesion in Mg(2+) and Mn(2+), mimicking the two key steps in leukocyte accumulation in inflamed vasculature. We mutated an interlinked linear array of three divalent cation-binding sites present in integrin beta-subunit I-like domains. The middle, metal ion-dependent adhesion site (MIDAS) is required for both rolling and firm adhesion. One polar site, that adjacent to MIDAS (ADMIDAS), is required for rolling because its mutation results in firm adhesion. The other polar site, the ligand-induced metal binding site (LIMBS), is required for firm adhesion because its mutation results in rolling. The LIMBS mediates the positive regulatory effects of low Ca(2+) concentrations, whereas the ADMIDAS mediates the negative regulatory effects of higher Ca(2+) concentrations, which are competed by Mn(2+). The bipolar sites thus stabilize two alternative phases of adhesion.

Takagi, J., Yang, Y., Liu, J.-H., Wang, J.-H. & Springer, T.A. Complex between nidogen and laminin fragments reveals a paradigmatic β-propeller interface. Nature 424, 6951, 969-974 (2003).Abstract

Basement membranes are fundamental to tissue organization and physiology in all metazoans. The interaction between laminin and nidogen is crucial to the assembly of basement membranes. The structure of the interacting domains reveals a six-bladed Tyr-Trp-Thr-Asp (YWTD) beta-propeller domain in nidogen bound to laminin epidermal-growth-factor-like (LE) modules III3-5 in laminin (LE3-5). Laminin LE module 4 binds to an amphitheatre-shaped surface on the pseudo-6-fold axis of the beta-propeller, and LE module 3 binds over its rim. A Phe residue that shutters the water-filled central aperture of the beta-propeller, the rigidity of the amphitheatre, and high shape complementarity enable the construction of an evolutionarily conserved binding surface for LE4 of unprecedentedly high affinity for its small size. Hypermorphic mutations in the Wnt co-receptor LRP5 (refs 6-9) suggest that a similar YWTD beta-propeller interface is used to bind ligands that function in developmental pathways. A related interface, but shifted off-centre from the pseudo-6-fold axis and lacking the shutter over the central aperture, is used in the low-density lipoprotein receptor for an intramolecular interaction that is regulated by pH in receptor recycling.