Publications

2001
Lu, C., Ferzly, M., Takagi, J. & Springer, T.A. Epitope mapping of antibodies to the C-terminal region of the integrin β2 subunit reveals regions that become exposed upon receptor activation. J. Immunol. 166, 9, 5629-5637. (2001).Abstract

The cysteine-rich repeats in the stalk region of integrin beta subunits appear to convey signals impinging on the cytoplasmic domains to the ligand-binding headpiece of integrins. We have examined the functional properties of mAbs to the stalk region and mapped their epitopes, providing a structure-function map. Among a panel of 14 mAbs to the beta(2) subunit, one, KIM127, preferentially bound to alpha(L)beta(2) that was activated by mutations in the cytoplasmic domains, and by Mn(2+). KIM127 also bound preferentially to the free beta(2) subunit compared with resting alpha(L)beta(2). Activating beta(2) mutations also greatly enhanced binding of KIM127 to integrins alpha(M)beta(2) and alpha(X)beta(2). Thus, the KIM127 epitope is shielded by the alpha subunit, and becomes reexposed upon receptor activation. Three other mAbs, CBR LFA-1/2, MEM48, and KIM185, activated alpha(L)beta(2) and bound equally well to resting and activated alpha(L)beta(2), differentially recognized resting alpha(M)beta(2) and alpha(X)beta(2), and bound fully to activated alpha(M)beta(2) and alpha(X)beta(2). The KIM127 epitope localizes within cysteine-rich repeat 2, to residues 504, 506, and 508. By contrast, the two activating mAbs CBR LFA-1/2 and MEM48 bind to overlapping epitopes involving residues 534, 536, 541, 543, and 546 in cysteine-rich repeat 3, and the activating mAb KIM185 maps near the end of cysteine-rich repeat 4. The nonactivating mAbs, 6.7 and CBR LFA-1/7, map more N-terminal, to subregions 344-432 and 432-487, respectively. We thus define five different beta(2) stalk subregions, mAb binding to which correlates with effect on activation, and define regions in an interface that becomes exposed upon integrin activation.

Lu_2001_14995.pdf
Fedyk, E.R., et al. Expression of stromal-derived factor-1 is decreased by IL-1 and TNF and regulates dermal wound healing. J. Immunol. 166, 9, 5749-5754. (2001).Abstract

Stromal-derived factor-1 (SDF-1) is a CXC chemokine that is believed to be constitutively expressed by stromal cells of numerous tissues. In this report, we demonstrate that dermal fibroblasts and vessels of noninflamed tissues express SDF-1. Unexpectedly, we found that expression of SDF-1 is regulated by inflammation. Expression of SDF-1 by primary cultures of human gingival fibroblasts is potently inhibited by activated macrophages via secretion of IL-1alpha and TNF-alpha. Levels of SDF-1 mRNA also decrease in acutely inflamed mouse dermal wounds. We propose that SDF-1 functions as a homeostatic regulator of tissue remodeling, whose expression stabilizes existing dermal architecture.

Fedyk_2001_15036.pdf
Smith, R.S., et al. IL-8 production in human lung fibroblasts and epithelial cells activated by the Pseudomonas autoinducer N-3-oxododecanoyl homoserine lactone is transcriptionally regulated by NF-κB and activator protein-2. J. Immunol. 167, 1, 366-374. (2001).Abstract

The destructive pulmonary inflammation associated with Pseudomonas aeruginosa colonization is caused, in part, by the production of the chemokine IL-8, which recruits neutrophils into the lung. The Pseudomonas autoinducer, N-3-oxododecanoyl homoserine lactone (3-O-C12-HSL), is a small lipid-soluble molecule that is essential in the regulation of many P. aeruginosa virulence factors, but little is known about how it affects eukaryotic cells. In this report we demonstrate that 3-O-C12-HSL is a potent stimulator of both IL-8 mRNA and protein from human fibroblasts and epithelial cells in vitro. The IL-8 produced from these 3-O-C12-HSL-stimulated cells was found to be functionally active by inducing the chemotaxis of neutrophils. To determine a mechanism for this IL-8 induction, deletion constructs of the IL-8 promoter were examined. It was found that the DNA region between nucleotides -1481 and -546 and the transcription factor NF-kappaB were essential for the maximal induction of IL-8 by 3-O-C12-HSL. This was confirmed by EMSAs, where 3-O-C12-HSL induced a shift with both AP-2 and NF-kappaB consensus DNA. The activation of NF-kappaB and subsequent production of IL-8 were found to be regulated by a mitogen-activated protein kinase pathway. These findings support the concept that the severe lung damage that accompanies P. aeruginosa infections is caused by an exuberant neutrophil response stimulated by 3-O-C12-HSL-induced IL-8. Understanding the mechanisms of 3-O-C12-HSL activation of lung structural cells may provide a means to help control lung damage during infections with P. aeruginosa.

Smith_2001_15150.pdf
Jeon, H., et al. Implications for familial hypercholesterolemia from structure of the LDL receptor YWTD-EGF domain pair. Nat. Struct. Biol. 8, 6, 499-504 (2001).Abstract

The low-density lipoprotein receptor (LDLR) is the primary mechanism for uptake of cholesterol-carrying particles into cells. The region of the LDLR implicated in receptor recycling and lipoprotein release at low pH contains a pair of calcium-binding EGF-like modules, followed by a series of six YWTD repeats and a third EGF-like module. The crystal structure at 1.5 A resolution of a receptor fragment spanning the YWTD repeats and its two flanking EGF modules reveals that the YWTD repeats form a six-bladed beta-propeller that packs tightly against the C-terminal EGF module, whereas the EGF module that precedes the propeller is disordered in the crystal. Numerous point mutations of the LDLR that result in the genetic disease familial hypercholesterolemia (FH) alter side chains that form conserved packing and hydrogen bonding interactions in the interior and between propeller blades. A second subset of FH mutations are located at the interface between the propeller and the C-terminal EGF module, suggesting a structural requirement for maintaining the integrity of the interdomain interface.

Jeon_2001_15024.pdf
Lu, C., et al. An isolated, surface-expressed I domain of the integrin αLβ2 is sufficient for strong adhesive function when locked in the open conformation with a disulfide. Proc Natl Acad Sci USA 98, 5, 2387-2392 (2001).Abstract

We introduced disulfide bonds to lock the integrin alphaLbeta2 I domain in predicted open, ligand binding or closed, nonbinding conformations. Transfectants expressing alphaLbeta2 heterodimers containing locked-open but not locked-closed or wild-type I domains constitutively adhered to intercellular adhesion molecule-1 (ICAM-1) substrates. Locking the I domain closed abolished constitutive and activatable adhesion. The isolated locked-open I domain bound as well as the activated alphaLbeta2 heterodimer, and binding was abolished by reduction of the disulfide. Lovastatin, which binds under the conformationally mobile C-terminal alpha-helix of the I domain, inhibited binding to ICAM-1 by alphaLbeta2 with wild-type, but not locked-open I domains. These data establish the importance of conformational change in the alphaL I domain for adhesive function and show that this domain is sufficient for full adhesive activity.

Lu_2001_14974.pdf
de Chateau, M., Chen, S., Salas, A. & Springer, T.A. Kinetic and mechanical basis of rolling through an integrin and novel Ca2+-dependent rolling and Mg2+-dependent firm adhesion modalities for the α4β7-MAdCAM-1 interaction. Biochemistry 40, 46, 13972-13979 (2001).Abstract

We studied interactions in shear flow of cells bearing integrins alpha4beta1 or alpha4beta7 with VCAM-1 and MAdCAM-1 substrates in different divalent cations. Interestingly, Ca(2+) was essential for tethering in flow and rolling interactions through both alpha4 integrins. Mg(2+) promoted firm adhesion of alpha4beta7-expressing cells on MAdCAM-1 but with much lower tethering efficiency in shear flow. The k(off) degrees of 1.28 s(-1) and resistance of the receptor-ligand bond to force (estimated as a bond interaction distance or sigma) for transient tethers on MAdCAM-1 were similar to values for E- and P-selectins. By contrast to results in Ca(2+) or Ca(2+) + Mg(2+), in Mg(2+) the alpha4beta7-MAdCAM-1 k(off) degrees decreased 20-fold to 0.046 s(-1), and the bond was weaker, providing an explanation for the finding of firm adhesion under these conditions. Shear enhanced tethering to MAdCAM-1, thereby contributing to the stability of rolling. Comparisons to selectins demonstrate that the kinetic and mechanical properties of the alpha4beta7 integrin are well suited to its intermediate position in adhesion cascades, in which it bridges rapid rolling through selectins to firm adhesion through beta2 integrins.

deChateau_2001_14791.pdf
Hioe, C.E., et al. LFA-1 expression on target cells promotes human immunodeficiency virus type 1 infection and transmission. J. Virol. 75, 2, 1077-1082 (2001).Abstract

While CD4 and the chemokine receptors are the principal receptors for human immunodeficiency virus (HIV), other cellular proteins, such as LFA-1, are also involved in HIV infection. LFA-1 and its ligands, ICAM-1, ICAM-2, and ICAM-3, can be expressed on the cells infected by HIV, as well as on the HIV virions themselves. To examine the role of LFA-1 expressed on target cells in HIV infection, Jurkat-derived Jbeta2.7 T-cell lines that express either wild-type LFA-1, a constitutively active mutant LFA-1, or no LFA-1 were used. The presence of wild-type LFA-1 enhanced the initial processes of HIV infection, as well as the subsequent replication and transmission from cell to cell. In contrast, the constitutively active LFA-1 mutant failed to promote virus replication and spread, even though this mutant could help HIV enter cells and establish the initial infection. This study clearly demonstrates the contribution of LFA-1 in the different stages of HIV infection. Moreover, not only is LFA-1 expression important for initial HIV-cell interaction, subsequent replication, and transmission, but its activity must also be properly regulated.

Hioe_2001_15083.pdf
Lu, C., Shimaoka, M., Zang, Q., Takagi, J. & Springer, T.A. Locking in alternate conformations of the integrin αLβ2 I domain with disulfide bonds reveals functional relationships among integrin domains. Proc Natl Acad Sci USA 98, 5, 2393-2398 (2001).Abstract

We used integrin alphaLbeta2 heterodimers containing I domains locked open (active) or closed (inactive) with disulfide bonds to investigate regulatory interactions among domains in integrins. mAbs to the alphaL I domain and beta2 I-like domain inhibit adhesion of wild-type alphaLbeta2 to intercellular adhesion molecule-1. However, with alphaLbeta2 containing a locked open I domain, mAbs to the I domain were subdivided into subsets (i) that did not inhibit, and thus appear to inhibit by favoring the closed conformation, and (ii) that did inhibit, and thus appear to bind to the ligand binding site. Furthermore, alphaLbeta2 containing a locked open I domain was completely resistant to inhibition by mAbs to the beta2 I-like domain, but became fully susceptible to inhibition after disulfide reduction with DTT. This finding suggests that the I-like domain indirectly contributes to ligand binding by regulating opening of the I domain in wild-type alphaLbeta2. Conversely, locking the I domain closed partially restrained conformational change of the I-like domain by Mn(2+), as measured with mAb m24, which we map here to the beta2 I-like domain. By contrast, locking the I domain closed or open did not affect constitutive or Mn(2+)-induced exposure of the KIM127 epitope in the beta2 stalk region. Furthermore, locked open I domains, in alphaLbeta2 complexes or expressed in isolation on the cell surface, bound to intercellular adhesion molecule-1 equivalently in Mg(2+) and Mn(2+). These results suggest that Mn(2+) activates alphaLbeta2 by binding to a site other than the I domain, most likely the I-like domain of beta2.

Lu_2001_14975.pdf
Shimaoka, M., et al. Reversibly locking a protein fold in an active conformation with a disulfide bond: integrin αL I domains with high affinity and antagonist activity in vivo. Proc Natl Acad Sci USA 98, 11, 6009-6014 (2001).Abstract

ICAM-2 > ICAM-3. The k(on), k(off), and K(D) values for the locked open I domain were within 1.5-fold of values previously determined for the alphaLbeta2 complex, showing that the I domain is sufficient for full affinity binding to ICAM-1. The locked open I domain antagonized alphaLbeta2-dependent adhesion in vitro, lymphocyte homing in vivo, and firm adhesion but not rolling on high endothelial venules. The ability to reversibly lock a protein fold in an active conformation with dramatically increased affinity opens vistas in therapeutics and proteomics."]" data-sheets-userformat="[null,null,8961,[null,0],null,null,null,null,null,null,null,3,0,null,null,null,9]">The integrin alphaLbeta2 has three different domains in its headpiece that have been suggested to either bind ligand or to regulate ligand binding. One of these, the inserted or I domain, has a fold similar to that of small G proteins. The I domain of the alphaM and alpha2 subunits has been crystallized in both open and closed conformations; however, the alphaL I domain has been crystallized in only the closed conformation. We hypothesized that the alphaL domain also would have an open conformation, and that this would be the ligand binding conformation. Therefore, we introduced pairs of cysteine residues to form disulfides that would lock the alphaL I domain in either the open or closed conformation. Locking the I domain open resulted in a 9,000-fold increase in affinity to intercellular adhesion molecule-1 (ICAM-1), which was reversed by disulfide reduction. By contrast, the affinity of the locked closed conformer was similar to wild type. Binding completely depended on Mg(2+). Orders of affinity were ICAM-1 > ICAM-2 > ICAM-3. The k(on), k(off), and K(D) values for the locked open I domain were within 1.5-fold of values previously determined for the alphaLbeta2 complex, showing that the I domain is sufficient for full affinity binding to ICAM-1. The locked open I domain antagonized alphaLbeta2-dependent adhesion in vitro, lymphocyte homing in vivo, and firm adhesion but not rolling on high endothelial venules. The ability to reversibly lock a protein fold in an active conformation with dramatically increased affinity opens vistas in therapeutics and proteomics.

Shimaoka_2001_14973.pdf
Chen, S. & Springer, T.A. Selectin receptor-ligand bonds: Formation limited by shear rate and dissociation governed by the Bell model. Proc Natl Acad Sci USA 98, 3, 950-955 (2001).Abstract

We have studied the principles that govern the formation and dissociation of an adhesive bond between a cell moving in shear flow and a substrate and tested different theories of how force affects bond dissociation. Viscosity relates the kinematics of fluid movement (shear rate, units of time(-1)) to shear stress (units of force/area, the product of shear rate and viscosity). At different medium viscosities, the formation of receptor-ligand bonds between a cell in the flowstream and P-selectin on the vessel wall showed a similar efficiency as a function of shear rate but not of shear stress. Therefore, bond formation was a function of shear rate and hence of the kinematics of receptor and ligand movement. By contrast, the kinetics of bond dissociation was a function of shear stress and hence of force on the bond. The different requirements for bond formation and dissociation allowed dissociation kinetics to be measured at higher forces on the bond by increasing medium viscosity. Data over an extended range of forces on the bond therefore could be collected that enabled five different proposed equations, relating force to bond dissociation, to be compared for fit to experimental data. The relationship proposed by Bell [Bell, G. I. (1978) Science 200, 618-627] fit the data significantly the best and also predicted an off-rate in the absence of force that best matched an independent measurement [Mehta, P., Cummings, R. D. & McEver, R. P. (1998) J. Biol. Chem. 273, 32506-32513].

Chen_2001_15023.pdf
Jun, C.-D., et al. Ultrastructure and function of dimeric, soluble intercellular adhesion molecule-1 (ICAM-1). J. Biol. Chem. 276, 31, 29019-29027 (2001).Abstract

Previous studies have demonstrated dimerization of intercellular adhesion molecule-1 (ICAM-1) on the cell surface and suggested a role for immunoglobulin superfamily domain 5 and/or the transmembrane domain in mediating such dimerization. Crystallization studies suggest that domain 1 may also mediate dimerization. ICAM-1 binds through domain 1 to the I domain of the integrin alpha(L)beta(2) (lymphocyte function-associated antigen 1). Soluble C-terminally dimerized ICAM-1 was made by replacing the transmembrane and cytoplasmic domains with an alpha-helical coiled coil. Electron microscopy revealed C-terminal dimers that were straight, slightly bent, and sometimes U-shaped. A small number of apparently closed ring-like dimers and W-shaped tetramers were found. To capture ICAM-1 dimerized at the crystallographically defined dimer interface in domain 1, cysteines were introduced into this interface. Several of these mutations resulted in the formation of soluble disulfide-bonded ICAM-1 dimers (domain 1 dimers). Combining a domain 1 cysteine mutation with the C-terminal dimers (domain 1/C-terminal dimers) resulted in significant amounts of both closed ring-like dimers and W-shaped tetramers. Surface plasmon resonance studies showed that all of the dimeric forms of ICAM-1 (domain 1, C-terminal, and domain 1/C-terminal dimers) bound similarly to the integrin alpha(L)beta(2) I domain, with affinities approximately 1.5--3-fold greater than that of monomeric ICAM-1. These studies demonstrate that ICAM-1 can form at least three different topologies and that dimerization at domain 1 does not interfere with binding in domain 1 to alpha(L)beta(2).

Jun_2001_15086.pdf
2000
Shimaoka, M., et al. Computational design of an integrin I domain stabilized in the open, high affinity conformation. Nat. Struct. Biol. 7, 8, 674-678 (2000).Abstract

We have taken a computational approach to design mutations that stabilize a large protein domain of approximately 200 residues in two alternative conformations. Mutations in the hydrophobic core of the alphaMbeta2 integrin I domain were designed to stabilize the crystallographically defined open or closed conformers. When expressed on the cell surface as part of the intact heterodimeric receptor, binding of the designed open and closed I domains to the ligand iC3b, a form of the complement component C3, was either increased or decreased, respectively, compared to wild type. Moreover, when expressed in isolation from other integrin domains using an artificial transmembrane domain, designed open I domains were active in ligand binding, whereas designed closed and wild type I domains were inactive. Comparison to a human expert designed open mutant showed that the computationally designed mutants are far more active. Thus, computational design can be used to stabilize a molecule in a desired conformation, and conformational change in the I domain is physiologically relevant to regulation of ligand binding.

Shimaoka_2000_14798.pdf
Yalamanchili, P., Lu, C., Oxvig, C. & Springer, T.A. Folding and function of I-domain deleted Mac-1 and LFA-1. J. Biol. Chem. 275, 29, 21877-21882 (2000).Abstract

In those integrins that contain it, the I domain is a major ligand recognition site. The I domain is inserted between beta-sheets 2 and 3 of the predicted beta-propeller domain of the integrin alpha subunit. We deleted the I domain from the integrin alpha(M) and alpha(L) subunits to give I-less Mac-1 and lymphocyte function-associated antigen-1 (LFA-1), respectively. The I-less alpha(M) and alpha(L) subunits were expressed in association with the wild-type beta(2) subunit on the surface of transfected cells and bound to all the monoclonal antibodies mapped to the putative beta-propeller and C-terminal regions of the alpha(M) and alpha(L) subunits, suggesting that the folding of these domains is independent of the I domain. I-less Mac-1 bound to the ligands iC3b and factor X, but this binding was reduced compared with wild-type Mac-1. In contrast, I-less Mac-1 did not bind to fibrinogen or denatured bovine serum albumin. Binding to iC3b and factor X by I-less Mac-1 was inhibited by the function-blocking antibody CBRM1/32, which binds to the beta-propeller domain of the alpha(M) subunit. I-less LFA-1 did not bind its ligands intercellular adhesion molecule-1 and -3. Thus, the I domain is not essential for the folding, heterodimer formation, and surface expression of Mac-1 and LFA-1 and is required for binding to some ligands, but not others.

Yalamanchili_2000_14779.pdf
Springer, T.A., Jing, H. & Takagi, J. A novel Ca2+-binding β-hairpin loop better resembles integrin sequence motifs than the EF-hand. CellCell 102, 275-277 (2000). Springer_2000_14802.pdf
Huang, C., Zang, Q., Takagi, J. & Springer, T.A. Structural and functional studies with antibodies to the integrin β2 subunit: a model for the I-like domain. J. Biol. Chem. 275, 28, 21514-21524 (2000).Abstract

mouse knock-out or mouse --> human knock-in mutations. Combinatorial epitopes involving residues distant in the sequence provide support for a specific alignment between the beta-subunit and I domains that was used to construct a three-dimensional model. Antigenic residues 133, 332, and 339 are on the first and last predicted alpha-helices of the I-like domain, which are adjacent on its \"front.\" Other antigenic residues in beta2 and in other integrin beta subunits are present on the front. No antigenic residues are present on the \"back\" of the domain, which is predicted to be in an interface with other domains, such as the alpha subunit beta-propeller domain. Most mutations in the beta2 subunit in leukocyte adhesion deficiency are predicted to be buried in the beta2 subunit I-like domain. Two long insertions are present relative to alpha-subunit I-domains. One is tied down to the back of the I-like domain by a disulfide bond. The other corresponds to the \"specificity-determining loop\" defined in beta1 and beta3 integrins and contains the antigenic residue Glu(175) in a disulfide-bonded loop located near the \"top\" of the domain."]" data-sheets-userformat="[null,null,8961,[null,0],null,null,null,null,null,null,null,3,0,null,null,null,9]">To establish a structure and function map of the beta2 integrin subunit, we mapped the epitopes of a panel of beta2 monoclonal antibodies including function-blocking, nonblocking, and activating antibodies using human/mouse beta2 subunit chimeras. Activating antibodies recognize the C-terminal half of the cysteine-rich region, residues 522-612. Antibodies that do not affect ligand binding map to residues 1-98 and residues 344-521. Monoclonal antibodies to epitopes within a predicted I-like domain (residues 104-341) strongly inhibit LFA-1-dependent adhesion. These function-blocking monoclonal antibodies were mapped to specific residues with human --> mouse knock-out or mouse --> human knock-in mutations. Combinatorial epitopes involving residues distant in the sequence provide support for a specific alignment between the beta-subunit and I domains that was used to construct a three-dimensional model. Antigenic residues 133, 332, and 339 are on the first and last predicted alpha-helices of the I-like domain, which are adjacent on its "front." Other antigenic residues in beta2 and in other integrin beta subunits are present on the front. No antigenic residues are present on the "back" of the domain, which is predicted to be in an interface with other domains, such as the alpha subunit beta-propeller domain. Most mutations in the beta2 subunit in leukocyte adhesion deficiency are predicted to be buried in the beta2 subunit I-like domain. Two long insertions are present relative to alpha-subunit I-domains. One is tied down to the back of the I-like domain by a disulfide bond. The other corresponds to the "specificity-determining loop" defined in beta1 and beta3 integrins and contains the antigenic residue Glu(175) in a disulfide-bonded loop located near the "top" of the domain.

Huang_2000_12649.pdf
Zang, Q., Lu, C., Huang, C., Takagi, J. & Springer, T.A. The top of the I-like domain of the integrin LFA-1 β subunit contacts the α subunit β-propeller domain near β-sheet 3. J. Biol. Chem. 275, 29, 22202-22212 (2000).Abstract

We find that monoclonal antibody YTA-1 recognizes an epitope formed by a combination of the integrin alpha(L) and beta(2) subunits of LFA-1. Using human/mouse chimeras of the alpha(L) and beta(2) subunits, we determined that YTA-1 binds to the predicted inserted (I)-like domain of the beta(2) subunit and the predicted beta-propeller domain of the alpha(L) subunit. Substitution into mouse LFA-1 of human residues Ser(302) and Arg(303) of the beta(2) subunit and Pro(78), Thr(79), Asp(80), Ile(365), and Asn(367) of the alpha(L) subunit is sufficient to completely reconstitute YTA-1 reactivity. Antibodies that bind to epitopes that are nearby in models of the I-like and beta-propeller domains compete with YTA-1 monoclonal antibody for binding. The predicted beta-propeller domain of integrin alpha subunits contains seven beta-sheets arranged like blades of a propeller around a pseudosymmetry axis. The antigenic residues cluster on the bottom of this domain in the 1-2 loop of blade 2, and on the side of the domain in beta-strand 4 of blade 3. The I domain is inserted between these blades on the top of the beta-propeller domain. The antigenic residues in the beta subunit localize to the top of the I-like domain near the putative Mg(2+) ion binding site. Thus, the I-like domain contacts the bottom or side of the beta-propeller domain near beta-sheets 2 and 3. YTA-1 preferentially reacts with activated LFA-1 and is a function-blocking antibody, suggesting that conformational movements occur near the interface it defines between the LFA-1 alpha and beta subunits.

Zang_2000_14786.pdf
1999
Chen, S. & Springer, T.A. An automatic braking system that stabilizes leukocyte rolling by an increase in selectin bond number with shear. J. Cell Biol. 144, 1, 185-200 (1999).Abstract

Wall shear stress in postcapillary venules varies widely within and between tissues and in response to inflammation and exercise. However, the speed at which leukocytes roll in vivo has been shown to be almost constant within a wide range of wall shear stress, i.e., force on the cell. Similarly, rolling velocities on purified selectins and their ligands in vitro tend to plateau. This may be important to enable rolling leukocytes to be exposed uniformly to activating stimuli on endothelium, independent of local hemodynamic conditions. Wall shear stress increases the rate of dissociation of individual selectin-ligand tether bonds exponentially (, ) thereby destabilizing rolling. We find that this is compensated by a shear-dependent increase in the number of bonds per rolling step. We also find an increase in the number of microvillous tethers to the substrate. This explains (a) the lack of firm adhesion through selectins at low shear stress or high ligand density, and (b) the stability of rolling on selectins to wide variation in wall shear stress and ligand density, in contrast to rolling on antibodies (). Furthermore, our data successfully predict the threshold wall shear stress below which rolling does not occur. This is a special case of the more general regulation by shear of the number of bonds, in which the number of bonds falls below one.

Chen_1999_14136.pdf
Dustin, M.L. & Springer, T.A. CD2/LFA-3 (CD2: T11, E rosette receptor; LFA-3: CD58). Guidebook to the Extracellular Matrix and Adhesion Proteins 154-157 (1999). Dustin_1999_13746.pdf
Ma, Q., Jones, D. & Springer, T.A. The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment. Immunity 10, 4, 463-471 (1999).Abstract

We report that the chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within fetal liver and bone marrow microenvironment. In CXCR4-deficient embryos, pro-B cells are present in blood but hardly detectable in liver; myeloid cells are elevated in blood and reduced in liver compared to wild-type embryos. Mice reconstituted with CXCR4-deficient fetal liver cells have reduced donor-derived mature B lymphocytes in blood and lymphoid organs. The numbers of pro-B and pre-B cells are reduced in bone marrow and abnormally high in blood. Granulocytic cells are reduced in bone marrow but elevated and less mature in the blood. B lineage and granulocytic precursors are released into the periphery in absence of CXCR4.

Ma_1999_14517.pdf
Oxvig, C., Lu, C. & Springer, T.A. Conformational changes in tertiary structure near the ligand binding site of an integrin I domain. Proc Natl Acad Sci USA 96, 5, 2215-2220 (1999).Abstract

For efficient ligand binding, integrins must be activated. Specifically, a conformational change has been proposed in a ligand binding domain present within some integrins, the inserted (I) domain [Lee, J., Bankston, L., Arnaout, M. & Liddington, R. C. (1995) Structure (London) 3, 1333-1340]. This proposal remains controversial, however, despite extensive crystal structure studies on the I domain [Lee, J., Bankston, L., Arnaout, M. & Liddington, R. C. (1995) Structure (London) 3, 1333-1340; Liddington, R. & Bankston, L. (1998) Structure (London) 6, 937-938; Qu, A. & Leahy, D. J. (1996) Structure (London) 4, 931-942; and Baldwin, E. T., Sarver, R. W., Bryant, G. L., Jr., Curry, K. A., Fairbanks, M. B., Finzel, B. C. , Garlick, R. L., Heinrikson, R. L., Horton, N. C. & Kelly, L. L. (1998) Structure (London) 6, 923-935]. By defining the residues present in the epitope of a mAb against the human Mac-1 integrin (alphaMbeta2, CD11b/CD18) that binds only the active receptor, we provide biochemical evidence that the I domain itself undergoes a conformational change with activation. This mAb, CBRM1/5, binds the I domain very close to the ligand binding site in a region that is widely exposed regardless of activation as judged by reactivity with other antibodies. The conformation of the epitope differs in two crystal forms of the I domain, previously suggested to represent active and inactive receptor. Our data suggests that conformational differences in the I domain are physiologically relevant and not merely a consequence of different crystal lattice interactions. We also demonstrate that the transition between the two conformational states depends on species-specific residues at the bottom of the I domain, which are proposed to be in an interface with another integrin domain, and that this transition correlates with functional activity.

Oxvig_1999_14360.pdf

Pages