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Integrins are important cell surface receptors that transmit
bidirectional signals across the membrane. It has been shown
that a conformational change of the integrin -subunit head-
piece (i.e. the B I domain and the hybrid domain) plays a
critical role in regulating integrin ligand binding affinity and
function. Previous studies have used coarse methods (a gly-
can wedge, mutations in transmembrane contacts) to force
the B-subunit into either the open or closed conformation.
Here, we demonstrate a detailed understanding of this con-
formational change by applying computational design tech-
niques to select five amino acid side chains that play an
important role in the energetic balance between the open and
closed conformations of allbf33. Eight single-point mutants
were designed at these sites, of which five bound ligands
much better than wild type. Further, these mutants were
found to be in a more extended conformation than wild type,
suggesting that the conformational change at the ligand bind-
ing headpiece was propagated to the legs of the integrin. This
detailed understanding of the conformational change will
assist in the development of allosteric drugs that either stabi-
lize or destabilize specific integrin conformations without
occluding the ligand-binding site.

Allostery is important in the function of many signaling pro-
teins (1), including cell adhesion molecules, such as integrins
(2). Integrins are large, heterodimeric molecules that transmit
signals bidirectionally across the plasma membrane and regu-
late many biological functions, including wound healing, cell
differentiation, and cell migration. The conformational
changes associated with integrin activation and signaling have
been studied structurally and functionally (3— 8). Integrins bind
ligands at an interface between the a-subunit B-propeller
domain and the B-subunit I domain in the integrin headpiece
(2). An acidic residue in the ligand coordinates with a Mg>" ion

* This work was supported, in whole or in part, by National Institutes of Health
Grant HL48675 (to T.A.S.). The costs of publication of this article were
defrayed in part by the payment of page charges. This article must there-
fore be hereby marked “advertisement” in accordance with 18 U.S.C. Sec-
tion 1734 solely to indicate this fact.

! Supported by American Heart Association Grant 0535403T.

2 Both of these authors contributed equally to this work.

3 Supported by the Damon Runyon Cancer Research Foundation.

“To whom correspondence should be addressed: Immune Disease Institute
and Departments of Pathology, Harvard Medical School, 200 Longwood
Ave, Boston, MA 02115. E-mail: SpringerOffice@idi.harvard.edu.

pCEENE

FEBRUARY 6, 2009+VOLUME 284+NUMBER 6

in a metal ion-dependent adhesion site (MIDAS).” Remodeling
of ligand-binding residues in the 8 I domain is allosterically
linked to reorientation at its interface with the hybrid domain.

Crystal structures of integrins have revealed open, liganded
(8) and closed, unliganded (3) conformations of the integrin
headpiece (Fig. 1). Movement of the B1-al and B6-a7 loops,
which bind the MIDAS and ADMIDAS (adjacent to MIDAS)
metal ions are coupled to movements of the al and «7 helices,
which are adjacent to one another. Reshaping to the open con-
formation, which exhibits high affinity for ligand, is alloster-
ically linked to C-terminal piston-like movement of the a7-he-
lix. This linkage is critical for bidirectional propagation of
conformational signals between the ligand binding pocket and
other integrin domains. The orientation between the 8 I and
hybrid domains appears to represent the critical “translator” for
converting large scale interdomain rearrangements into local
conformational changes within the 8 I domain that regulate
affinity for ligand. The piston-like displacement of the a7-helix
of the 81 domain in the “open” crystal structure results in com-
plete remodeling of the interface with the hybrid domain (8).
Relative to the closed conformation, the hybrid domain swings
out about 60°, resulting in a 70-A displacement of the B-subunit
knee away from the a-subunit knee.

In the bent integrin conformation, the headpiece is in the
closed conformation. After a switchblade-like extension at the
integrin knees, the headpiece is found in both closed and open
conformations (2). Extensive interfaces between the integrin
headpiece and lower legs in the bent conformation are broken
both by integrin extension and by hybrid domain swing-out;
therefore, headpiece opening is less energetically costly in the
extended than in the bent conformation. Conversely, headpiece
opening favors integrin extension. This provides a mechanism
in integrins for communicating activation signals between the
ligand binding site in the headpiece and cytoskeletal protein-
binding sites in the « and B-subunit cytoplasmic domains.

Characterization of integrin variants has provided strong evi-
dence linking the “open” state observed in crystal structures,
the “extended” integrin morphology observed via negative
staining electron microscopy, and the “high affinity for ligand”
state observed in cell adhesion assays. One such study intro-
duced an N-glycosylation site at the most acute region of the

®The abbreviations used are: MIDAS, metal ion-dependent adhesion site;
SASA, solvent-accessible surface area; CHO, Chinese hamster ovary; mAb,
monoclonal antibody; FITC, fluorescein isothiocyanate; MFI, mean fluores-
cence intensity; LIBS, ligand-induced binding site.
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FIGURE 1. An overview of the integrin allbf33 conformational change, showing the closed (a) and open
(b) conformations. Structures are aligned using the hybrid domain, and sites of mutated residues are shown

residues in the open state were
taken as the median from values
computed using each of six allbB3
structures: Protein Data Bank codes
1txv, 1ty3, 1ty5, 1ty6, 1ty7, and 1tye
(8). In all cases, the range of residues
considered was Pro®”—Asp™**. After
the mutational studies were com-
pleted, five of these open structures
were rerefined, and four further
ones were reported: Protein Data
Bank codes 2vc2, 2vdk, 2vdl, 2vdm,
2vdn, 2vdo, 2vdp, 2vdq, and 2vdr
(13). Moreover, a higher resolution
and better refined closed structure
of allbB3 was reported.® The envi-
ronment of each selected residue
was computed retrospectively for
these structures as well, by using
only the newer or rerefined struc-
tures. For cases in which more than

in a space fill representation. This figure was generated using PyMOL (14).

interface between the 8 I domain and the hybrid domain. The
resulting glycan “wedge,” designed to shift the conformational
balance toward the open state, was indeed found to increase
ligand binding affinity (9, 10). This study laid the groundwork
for understanding the relationship of the hinge between the B 1
domain and the hybrid domain to ligand binding affinity.

Here, we seek to extend the understanding of integrin func-
tion beyond the resolution afforded by the glycan wedge. We
test the hypothesis that the detailed interactions that differ
between crystal structures in the open and closed headpiece
conformations indeed form the basis for allosteric regulation of
ligand binding affinity and that shifting the equilibrium toward
the open headpiece also shifts the equilibrium from the bent
toward the extended conformation. Protein engineering can
manipulate the energetic balance between alternate conforma-
tional states of proteins (11). We have applied computational
design techniques to select single amino acid side chains that
play an important role in the energetic balance between the
open and closed conformations of alIbB33. A series of single-
point mutants was rationally designed, with the goal of sta-
bilizing the open conformation of allbf3 relative to the
closed conformation. These mutations were predicted to
enhance both ligand binding affinity and integrin extension
on the cell surface.

MATERIALS AND METHODS

Identification of Sites for Mutation—Identification of sites for
mutation was carried out by using the Rosetta software package
to compute differences in the environment of each residue
associated with the switch between the open and closed confor-
mations. The residue environments for residues in the closed
state were taken as the median from values computed using
each of four avf3 structures: Protein Data Bank codes 1jv2,
115g, 1m1x, and 1u8c (3, 4, 12). The residue environments for
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one subunit was present in the

asymmetric unit, calculations were

averaged over all independent sub-
units. This retrospective analysis shows no qualitative differ-
ences to the data collected using the smaller set of structures
(Table 1), except for the quality of packing around Leu'*® and
Glu*® (the new open alIbB3 structures exhibit better packing
at these positions than the new closed structures). The electron
density around these two residue environments is not well
resolved in the newer closed structures, however, which may
explain these differences. Pro®® was originally selected as a site
for mutation but has been discarded from the current study
because it was assigned as cis in open oIIbB3 and trans in closed
a3 but subsequently cis in closed allbB3; furthermore, the
mutation of this cis-Pro to Gly resulted in a lack of expression
(data not shown). The side chain solvent-accessible surface area
(SASA) was computed using a 1.4-A probe to search for sites
buried in the closed state but exposed in the open state.

The quality of packing of each residue was additionally
assessed via “SASApack.” This measure involves computing the
side chain-accessible surface area using a 0.5-A probe and com-
paring the value to the average value for side chains with similar
SASA (computed using a 1.4-A probe). This metric has proven
effective at detecting packing defects, since holes lead to an
increase in the accessible surface area available to a small
probe.”

Plasmid Construction, Expression, and Immunoprecipitation—
Plasmids coding for full-length human olIb and 3 were sub-
cloned into pEF/V5-HisA and pcDNA3.1/Myc-His (+), respec-
tively (5). Single-residue substitutions of 33 were carried out
using site-directed mutagenesis. Constructs were transfected
into CHO-K1 cells (American Type Culture Collection) using a
Fugene transfection kit (Roche Applied Science) according to

6Zhu, J., Luo, B. H,, Xiao, T., Zhang, C,, Nishida, N., and Springer, T. A. (2008)
Mol. Cell 32,849-861.
7 P. Bradley, personal communication.
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Median value of quantifiers computed from multiple Protein Data Bank structures for the open and closed states
Values are shown separately for structures available at the time the mutants were designed (on the left), and for structures released subsequently (on the right). Italicized

values formed the basis for designed mutants.

Open state structures

Closed state structures

Current open state Current closed state

Quantifier used in designing mutants (6) used in designing mutants (4) structures (9) structures (5)

SASA (A?) Leu’%: 0.0 Leu'®®: 1.3 Leu'*%: 0.0 Leu'?®: 1.7
Glu®®°: 47.3 Glu®®®: 26.7 Glu®®: 53.1 Glu®®®: 25.0

Ser’**: 41.4 Ser**3: 9.1 Ser***: 39.4 Ser***: 6.6

Arg*?: 99.9 Arg®* 2.7 Arg®%:102.3 Arg®* 3.7

Lys*'”: 38.0 Lys*'7: 9.4 Lys*7:33.7 Lys*7:10.7

SASApack (dimensionless) Leu'3: 9.7 Leu'*3: 0.0 Leu'®®: 3.65 Leu'®: 0.3
Glu*%: 4.1 Glu®®: 1.5 Glu*®®: —0.87 Glu*®: 1.5

Ser’**: 2.5 Ser®**:10.2 Ser’**:2.13 Ser®**:10.2

Arg*% —0.3 Arg*% 5.0 Arg®?20.22 Arg*?:7.3

Lys*'”: —0.8 Lys™”: —2.9 Lys*'7: 8.42 Lys*'”: 1.0

the manufacturer’s instructions. Stably transfected CHO cells
were established as described (9). The expression levels of allb
and 33 were detected by flow cytometry staining with the fol-
lowing monoclonal antibodies: 10E5 (anti-allb mAb, kindly
provided by B. S. Coller, The Rockefeller University, New York,
NY) (15), 7E3 (anti-B3 mAb), and AP3 (nonfunctional anti-33
mADb, American Type Culture Collection), respectively.

Soluble Ligand Binding—The activating anti-allb mAb
PT25-2 was a generous gift from M. Handa (Keio University
Hospital, Tokyo, Japan) (16). Soluble binding of FITC-labeled
human fibrinogen (Enzyme Research Laboratories, South
Bend, IN) and ligand mimetic IgM PAC-1 (BD Biosciences) was
determined as described (9). Briefly, transfected cells sus-
pended in 20 mMm Hepes-buffered saline (pH 7.4) supplemented
with 5.5 mm glucose and 1% bovine serum albumin were incu-
bated with FITC-conjugated human fibrinogen or PAC-1 in the
presence of either 5 mm EDTA; 1 mm Ca®", 1 mm Mg®", 1 mm
Mn**; 1 mm Ca®", 1 mm Mg®" plus 10 ug/ml activating mAb
PT25-2; or 1 mm Mn?>* plus 10 ug/ml PT25-2 at room temper-
ature for 30 min. For PAC-1 binding, cells were washed and
stained with FITC-conjugated anti-mouse IgM on ice for
another 30 min before being subjected to flow cytometry. Cells
were also stained in parallel with anti-B83 mAb AP3 followed by
FITC-conjugated anti-mouse IgG. Binding activity is presented
as the percentage of the mean fluorescence intensity (MFI) of
PAC-1 or fibrinogen staining, after background subtraction of
the staining in the presence of EDTA, relative to the MFI of the
AP3 staining.

Cell Adhesion—Cell adhesion on immobilized human fibrin-
ogen was assayed using cellular lactate dehydrogenase (17).
Briefly, cells suspended in Hepes-buffered saline supplemented
with 5.5 mm glucose and 1% bovine serum albumin and either 1
mm EDTA or 1 mm Ca®" plus 1 mm Mg?" were added to flat
bottom 96-well plates (1 X 10* cells/well) that had been pre-
coated with different concentrations of fibrinogen and blocked
with 1% bovine serum albumin. After incubation at 37 °C for
1 h, wells were washed three times with Hepes-buffered saline
supplemented as indicated above. Remaining adherent cells
were lysed with 1% Triton X-100, and lactate dehydrogenase
activity was assayed using the Cytotoxicity Detection Kit (LDH)
(Roche Applied Science) according to the manufacturer’s
instructions.

Ligand-induced Binding Site (LIBS) Epitope Expression—An-
ti-LIBS mAb AP5, LIBS1, and D3 were kindly provided by M. H.
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Ginsberg (University of California San Diego, La Jolla, CA) and
L. K. Jennings (University of Tennessee Health Science Center,
Memphis, TN). LIBS epitope expression was determined as
described previously (9). In brief, transfected cells suspended in
Hepes-buffered saline supplemented with 5.5 mm glucose and
1% bovine serum albumin were incubated with or without 50
uM Gly-Arg-Gly-Asp-Ser-Pro peptide (GRGDSP) in the pres-
ence of 1 mm Ca?* plus 1 mm Mg®" and 10 pg/ml anti-LIBS
antibodies or control X63 IgG. After incubation at room tem-
perature for 30 min, cells were washed and stained with FITC-
labeled anti-mouse IgG on ice for 30 min. The stained cells were
subjected to flow cytometry, and LIBS epitope expression was
expressed as the percentage of MFI of anti-LIBS antibody after
subtraction of MFI of the control X63 IgG, relative to MFI of the
conformation-independent anti-33 mAb AP3 after subtraction
of the same control.

RESULTS

Rationale for Mutations to Stabilize B3 Integrin in the Open
State—Initally, conventional computational design methodol-
ogies (18) were applied to collect a series of mutations predicted
to be stabilizing for each of several open 33 state integrin struc-
tures. Incorporation of a predicted stabilizing mutation from
one open state structure onto a different open state structure,
however, seldom proved stabilizing; this was an indication that
the design methodology was too sensitive to structural details
to be useful for this application. For this reason, mutations at
each site were selected as per the rationale described below.

Computational design was based on multiple examples of 33
integrin structures in each of the closed and open conforma-
tions (Table 1). Changes in residue environments as measured
by SASA or SASApack (see “Materials and Methods”) between
closed and open structures were used to identify sites of muta-
tion. Due to the moderate resolution of the crystal structures
used (Bragg spacings for these structures range from 2.7 to 3.3
A), emphasis was placed on disruption of specific stabilizing
interactions in the closed conformation rather than design of
new stabilizing interactions in the open conformation. Resi-
dues near the fibrinogen-binding site were not considered.

Arg®? (B I-Hybrid Interface)—The solvent-accessible sur-
face area of Arg®>” increases considerably in switching from
the closed to the open state (Table 1). At the C-terminal end
of the a7-helix of the B8 I domain, Arg>*> appears to play a
critical role in stabilizing the closed state, in which it is fully
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FIGURE 2. A detailed examination of the environment of each mutated
residue, in the closed (a, ¢, e, g, and i) and open (b, d, f, h, and j) confor-
mations. Mutated residues were as follows: Arg>>? (a and b), Ser*** (c and d),
Leu'8 (eand f), Lys*'” (g and h), and GIu?°® (i and j). This figure was generated
using PyMOL (14).

occluded from solvent and forms a series of hydrogen bonds
(Fig. 2a). After the switch to the open state, however, the a7-he-
lix unwinds just enough that this side chain becomes largely
exposed and forms a single surface-exposed hydrogen bond
that caps the C terminus of the a7-helix (Fig. 2b). In order to
destabilize the closed state with minimal disruption of the open
state, a glutamate was introduced at this position.

Ser**3 (B I-Hybrid Interface)—The solvent-accessible surface
area of this side chain near the hinge region was also found to
increase upon switching from the closed to open state (Table 1).
In the closed state, this partially buried serine side chain faces
the a7-helix and occupies a small cavity below the plane of the
side chain of Arg®** (described above) (Fig. 2c). This cavity is
sterically bounded by Tyr''® and Phe**!, shown in the fore-
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ground of Fig. 2¢ (in stick representation). The relocation of the
a7-helix and release of Arg®>? associated with the transition to
the open conformation, meanwhile, expose this side chain to
solvent (Fig. 2d). Additionally, Tyr''® and Phe**! have shifted
to where they are no longer visible in the view presented (Fig.
2d). In order to take advantage of the tight steric constraints of
the low affinity state, aspartate and glutamate were each intro-
duced in place of this serine.

Leu'3 (B I Domain)—The SASApack value computed for
this leucine side chain in the closed conformation, about zero,
showed that this residue was packed in an environment similar
to that of an average leucine in the Protein Data Bank (Table 1).
After the transition to the open conformation, however, this
side chain was much less well packed than the Protein Data
Bank average for leucine (Table 1). Examination of the sur-
rounding side chains shows that packing considerations are
responsible for this difference. In the closed state, this inward
facing leucine side chain fits snugly into a pocket that exactly
complements the shape of the side chain (Fig. 2e). Upon
transition to the open conformation, however, the al-helix
slides relative to the rest of the B I domain, such that this side
chain fits into a pocket formed by a different set of side
chains. This pocket exhibits much less shape complementa-
rity toward the leucine side chain (Fig. 2f); in particular, a
void remains near the leucine C-f atom, which would be
filled by substitution of a B-branched amino acid at this posi-
tion. To improve the packing of the open conformation
while disrupting the packing of the closed conformation, this
position was mutated to isoleucine.

Lys*'” (Hybrid Domain)—A difference in SASA between the
open and closed conformations was observed for this lysine side
chain (Table 1), which is located on the outward facing side of
the BE-strand of the hybrid domain. In the closed state, the
BE-BG loop adopts a noncanonical conformation, allowing it to
pack against the a5-helix of the 8 I domain. The backbone
carbonyl groups in this loop face inward, allowing one of these
to form a hydrogen bond to the side chain of Lys*'”. This lysine
side chain also forms a hydrogen bond to Asn®*?, which in turn
acts as a “capping residue” on the C-terminal end of the a5-he-
lix (Fig. 2g).

The hinge motion involved in the transition to the open con-
formation results in a complete loss of the interactions between
the BF-BG loop and the 3 I domain, exposing the outward
facing side chains on the BF-strand of the hybrid domain
(including Lys*'”). The conformation of the BF-BG loop
relaxes, allowing the backbone to form hydrogen bonds to sol-
vent (Fig. 2k). Given the relative unimportance of the detailed
interactions in the open conformation (further supported by
the higher crystallographic B-factors in this state), “charge
reversal” mutations of Lys*'” to aspartate and glutamate were
introduced to disrupt the hydrogen bonds stabilizing the
BE-BG loop in the closed conformation.

Glu*% (B I Domain)—Although the most obvious structural
rearrangement of the B I domain takes place in the al- and
a7-helices, a very subtle twist occurs in the a2-helix as well (8).
Comparison of the quality of packing in both states via SASA-
pack (see “Materials and Methods”) brought to light a subtle
difference in this region (Table 1).
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FIGURE 3. Expression and soluble ligand binding of integrin allb33 on
293T cells. A, 293T transient transfectants were immunofluorescently
stained with mAbs 7E3 (open bars), AP3 (gray bars), and 10E5 (black bars).
B, soluble PAC-1 binding to 293T transfectants was determined in the pres-
ence of 5mmCa?* (open bars) or 1 mmMn?* plus 10 ug/ml mAb PT25-2 (black
bars) and is expressed as the MFI of PAC-1 staining as a percentage of MFI of
staining with AP3. Data are mean and S.D. of three independent experiments.

Although the aliphatic portion of the Glu*°® side chain packs
snugly against Val'®® and Leu'®* in the closed conformation
(Fig. 2i), this interaction is lost in the open conformation (Fig.
2j). This small decrease in packing density led to the hypothesis
that introduction of a B-branched amino acid in place of this
glutamate could be accommodated in the open conformation
but would prove greatly destabilizing to the closed conforma-
tion. Mutations to isoleucine and threonine were therefore
introduced in place of this glutamate.

In all, eight point mutants were selected at five sites: R352E,
S$243D, S243E, L1381, K417D, K417E, E2061, and E206T. As
shown in Fig. 1, these sites are not restricted to the hinge region
connecting the B I and hybrid domains; rather, they span the
pathway that transmits the conformational change from the
cell surface to the fibrinogen-binding site. Each of these point
mutations was tested independently to gauge its effect on
expression and ligand binding.

Expression of the Mutant alIbB3 in 293T Cells—To deter-
mine whether these mutant 33 integrins could be expressed
with the allb-subunit, we transiently transfected the eight
allbB3 mutants into 293T cells. Two anti-B3 antibodies, 7E3
and AP3, and an af8 complex-dependent anti-allb antibody,
10E5, were used to monitor expression on the cell surface. All
three antibodies gave similar results (Fig. 34). Three mutants
(L138I, E206I, and S243D) were expressed at wild-type levels.
Four mutants (E206T, S243E, K417E, and K417D) were
expressed at levels lower than that of the wild type. The remain-
ing mutant, R352E, was not expressed at detectable levels.

Five Mutants Have Enhanced Ligand Binding Affinity—The
seven expressed mutants were tested for ligand binding in 293T
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transfectants. In all experiments measuring binding of the
ligand-mimetic antibody PAC-1 or soluble fibrinogen, binding
was expressed relative to alIbf3 surface expression to correct
for differing amounts of cell surface expression by the mutants.
In the presence of Ca®", wild type allbB3 bound very little
ligand-mimetic PAC-1 antibody, whereas the presence of
Mn?" and activating mAb PT25-2 greatly increased binding
(Fig. 3B). In contrast to wild type, five of the seven mutants,
L138I, E206T, S243E, K417E, and K417D, bound PAC-1 in
Ca®" (Fig. 3B). Binding in Ca>" was comparable with that in
activating conditions and with activated wild-type.

We have previously observed that mutations that stabilize
integrins in the high affinity, extended conformation lead to
decreased cell surface expression, presumably because the
bent conformation is more efficiently processed and trans-
ported to the cell surface (9). Consistent with the tendency of
activating mutations to decrease surface expression, three of
five activating mutations, E206T, K417E, and K417D,
decreased surface expression, whereas the two nonactivating
mutations, E206I and S243D, had no effect on surface
expression (Fig. 3). However, the L1381 and S243E mutations
were activating while having no or little effect on surface
expression.

To further characterize the five high affinity mutants, stable
CHO-K1 cell transfectants were established, and clones with
similar expression of wild-type and mutant allbB3 were
selected. Soluble PAC-1 (Fig. 4A4) and fibrinogen (Fig. 4B) bind-
ing showed that wild type allbB3 bound ligands only when
stimulated by Mn*" and/or PT25-2. By contrast, the five
mutants bound ligands with significant higher capability in the
presence of Ca® confirming that all five mutations activated
integrins for ligand binding (Fig. 4, A and B). In the presence of
Mn>" and PT25-2, all mutations and wild-type bound ligands
maximally.

The affinity state of the wild type and mutants was further
assessed by cell adhesion assays on immobilized fibrinogen. In
contrast to soluble ligand binding, at coating concentrations
above 5 pg/ml, wild type cells mediated efficient adhesion to
immobilized fibrinogen even in the absence of activation (Fig.
4C). All mutant cells adhered to immobilized fibrinogen at
lower coating concentrations than wild-type, and two mutants,
K417E and K417D, even adhered to the substrate at 1 ug/ml
coating concentrations.

Mutations That Enhanced Ligand Binding Stabilized Inte-
grins in the Extended Conformation—Activation and/or ligand
binding change the conformation of allbB3, resulting in the
exposure of neoepitopes called LIBS. We investigated the con-
formation of the mutants with three different LIBS antibodies,
which bind to various sites in the 83-subunit (Fig. 5). Under
basal conditions in Ca®", all mutants showed increased expres-
sion of the D3 (anti-B3 residues 422-490) (19) and LIBS1
(anti-B3 residues 422—690) (20) epitopes and, with the excep-
tion of S243E, showed increased expression of the AP5 (anti-33
residues 1-5) (20) epitope. Thus, the equilibrium is shifted to a
more extended conformation in the five mutant receptors with
higher affinity for ligand.
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FIGURE 4. Ligand binding activity of integrin allbf3 on CHO-K1 cells.
A and B, soluble ligand binding. Cells were incubated with PAC-1 (A) or FITC-
fibrinogen (B) in different conditions, as shown in the figures and determined
as described under “Materials and Methods.” C, adhesion of the wild type and
mutant transfectants to surface coated with fibrinogen at the indicated con-
centrations. Data are representative of three independent experiments, each
in duplicate or triplicate. The representative experiment shown was in tripli-
cate, and bars show S.D.

DISCUSSION

We computationally designed mutations that energetically
favor the open, high affinity conformation of the (33 integrin
headpiece. Five of the eight designed mutations bound ligands
much better than wild type. More interestingly, these mutants
were found to be in the more extended conformation than wild
type, suggesting that the conformational change at the ligand
binding headpiece was propagated to the legs of the integrin.

Rationalization of Unsuccessful Mutations—As noted earlier,
locking the integrins into the open conformation through the
introduction of a glycan wedge in the interface region led to a
significant decrease in expression levels (9). It is therefore not
entirely surprising that one of the mutations that may be
expected to most destabilize the closed conformation (R352E)
essentially abolished expression.

Unlike this unsuccessful design, however, two of the
mutants, S243D and E206I, were expressed but failed to
show a significant increase of ligand binding capability. For-
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FIGURE 5. Exposure of LIBS epitopes. Wild type and mutant allb33 CHO cell
transfectants were incubated with LIBS mAbs AP5 (A), D3 (B), and LIBS1 (C) in
the presence of 5 mm Ca2™ (open bars) or 1 mm Mn2* plus 100 um GRGDSP
peptide (black bars) as described under “Materials and Methods.” Consistent
results were obtained in three independent experiments done in singlicate,
with two experiments on CHO transfectants as shown (mean and difference
from mean) and one on 293T transfectants.

tuitously, another mutation tested at each of these sites
showed increased ligand-binding; this allows for a direct ret-
rospective comparison.

In the case of substitutions at Ser**?, RosettaDesign (21) was
used to build both Asp and Glu side chains at this position of
each crystal structure, keeping the backbones fixed. Examina-
tion of these structural models (Fig. 6) suggests an explanation
for the different behavior of these two mutants.

In the closed conformation, both Asp and Glu may be steri-
cally accommodated in place of Ser**3; in both cases, however,
the geometry of the substituted side chain is not suitable to
form a hydrogen bond, leaving this charged group unsatisfied
(Fig. 6, a and ¢). The models of the open conformation, how-
ever, show a marked difference between Asp and Glu. Although
the aliphatic part of the glutamate side chain is long enough that
the carboxyl group may be fully exposed to solvent (Fig. 6b), this
is not true of the aspartate side chain; the Asp side chain is
buried by its environment in a manner that precludes forma-
tion of a hydrogen bond in the open conformation (Fig. 6d).

Based on these models, we therefore conclude that introduc-
tion of the $243D mutation destabilizes both the open and
closed conformations to a similar extent, leading to ligand affin-
ity comparable with that of the wild type. By contrast, S243E
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FIGURE 6. Comparison of structural models of the S243E (a and b) and
$243D (c and d) mutants, in the closed conformation (a and ¢) and in the
open conformation (b and d), built using RosettaDesign. This figure was
generated using PyMOL (14).

destabilizes only the closed conformation, leading to an
increase in ligand binding affinity.

A similar structural explanation may underlie the difference
in the observed behavior of the E206I and E206T mutants.
Although the E206T mutant demonstrates that disruption at
this site is indeed a viable method for enhancing ligand binding
affinity, isoleucine was not a good choice at this position. The
energetic details underlying the differences between E2061 and
E206T are more complex, however, stemming from the chem-
ical as well as steric differences between isoleucine and
threonine.

Strategy for Selection of Mutation Sites—Although not all of
the mutations led to the desired increase in ligand binding affin-
ity, each site identified from the computational comparison led
to at least one mutant with altered behavior. This underscores
the robustness of the strategy of selecting mutation sites based
on differences in SASA and packing. This robust approach was
developed specifically to cater to this design problem because of
the relatively poor resolution of crystal structures of each state
(Bragg spacings for the structures of the closed conformation
range from 3.1 to 3.3 A and from 2.7 to 3.1 A for the structures
of the open conformation). This had two implications in select-
ing a design strategy.

First, it has long been known that crystal structures of poor
resolution suffer larger deviations in torsion angles (22) as well
as irregular packing (23). Since both of these features are cap-
tured in the full RosettaDesign energy function (21), it was not
clear that residues scoring poorly with this energy function
were indeed subject to energetic strain; rather, observed differ-
ences between the two conformations could be due solely to
slight inaccuracies in atomic positions. For this reason, assess-
ment of residue environments focused on using features that
would be more robust toward such inaccuracies, such as sol-
vent-accessible surface area. The use of six structures to repre-
sent the open conformation was an additional measure to alle-
viate these concerns.
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Whereas the possible design strategy of relieving strain spe-
cific to the open conformation did not seem promising, a
related approach, designing new favorable interactions specific
to the open conformation, might also be expected to fail for the
same reasons. Such an approach has recently been used in the
thermostabilization of an enzyme (18), demonstrating that
function can be maintained after incorporation of new stabiliz-
ing interactions, but the structure of the target protein used in
this study was available at a resolution of 1.14 A (24).

Here, we have demonstrated that crystal structures at about 3
A resolution are sufficient for rationally designing mutations
that will preferentially destabilize one conformation, by using
“robust” measures to select sites for mutation. This, in turn,
raises the interesting possibility of using high quality homology
models as the basis for selecting sites for mutation. The useful-
ness as a search model for solving the crystallographic “phase
problem” via molecular replacement represents a very stringent
test of the accuracy of a homology model (25). Recent progress
in structure prediction has greatly loosened the requirement of
sequence similarity for building models of sufficient accuracy
for molecular replacement (26). This, together with design
strategies that specifically focus on yielding robust results from
structures at relatively poor resolution, offers the tantalizing
prospect for rational manipulation of protein states for which
high quality crystal structures are not yet available.

Mutational Studies of Mechanism of Allosteric Switch—In-
terestingly, the five mutants with enhanced ligand binding
affinity were found to be in a conformation more extended than
wild type, suggesting that the conformational change at the
ligand binding headpiece was propagated to the integrin legs.
Previously, we showed that introducing a bulky glycan group to
the interface between the 81 or 83 I domain and hybrid domain
caused integrins to adopt a high affinity and extended confor-
mation (9, 10). Other studies showed that mutations intro-
duced in the B1 integrin I domain increased ligand binding and
shifted the equilibrium toward more extended conformation
(27). However, introducing disulfides to the 83 I domain C-ter-
minal a7-helix or deleting four residues of the 82 I domain
a7-helix increased integrin ligand binding, whereas the overall
conformation of the receptors was still in the bent conforma-
tion unless ligands were added (28, 29), probably because these
mutations circumvented allosteric communication of the B3 I
domain through its a7-helix with the hybrid domain (30). Here,
our studies demonstrate that single-residue substitutions both
in the B3 I domain and in the hybrid domain can stabilize this
integrin in the high affinity, extended conformation. The
results suggest that integrins are pliable to environmental
change; subtle changes in the structure, either by mutation or
by binding of other proteins, can readily shift the equilibrium
from one conformer to the other.

Preferential stabilization of one integrin conformation rep-
resents an attractive method for understanding integrin func-
tion; not surprisingly, several approaches have been used to
engineer integrins locked into either the high or low affinity
state.

Rationally designed amino acid substitutions have previously
been applied to selectively stabilize both the open and closed
states of a different integrin, Mac-1 («Mf2, or CD11b/CD18).
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Several single- and double-point mutants in the a-I domain
have been described (31-33), which lead to modest increases in
the ligand binding affinity (34). Much larger effects on ligand
binding affinity were obtained through the complete computa-
tional redesign of the a-I domain core (35). By using crystal
structures of the open and closed conformations of this
domain, redesigned domains were proposed and tested. These
redesigned domains, which required four mutations to stabilize
the closed conformation and 8 —13 mutations to stabilize the
open conformation, induced a stronger shift toward the desired
conformation than a single-point mutant included for compar-
ison (35).

Although it is expected to be generally true that the complete
redesign of a protein core is likely to induce a larger energetic
shift than most single-point mutants, such an approach was not
applied to allbB3, for two reasons. First, the crystal structures
of the Mac-1 «-I domain were available at better resolution
than the structures of the 33 headpiece. Second, carefully cho-
sen single-point mutants are more likely to preserve subtle
details of the structure, which can be important for maintaining
long range propagation of the conformational changes as well
as binding surfaces for other proteins. Both of these are pre-
served in the series of mutations presented here, evidenced by
binding of anti-LIBS antibodies and the fact that mutations in
the hybrid domain affect ligand binding in the 8 I domain.

CONCLUSIONS

Integrins represent attractive pharmaceutical targets for a
variety of human diseases; abciximab, eptifibatide, and tirofi-
ban all target integrin «IIbf3 and have been approved by the
United States Food and Drug Administration for the treatment
of thrombosis (36, 37). Whereas these compounds block the
interaction of integrins with the receptor, the conformational
changes they induce can themselves initiate unwanted signals.
In fact, it has been shown that these three antagonists can induce
thrombocytopenia in 1-5% of patients (37). Due to the importance
of allostery in regulating integrin function, it is critical to extend
our detailed understanding of the relationship of integrin confor-
mation with ligand binding.
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