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Summary 
Based on protein sequence, we have isolated a cDNA for intercellular adhesion molecule 3 (ICAM-3), 
the most recently defined counter-receptor for lymphocyte function-associated antigen 1 (LFA- 
1). Expression of the eDNA yields a product that reacts with monoclonal antibody to ICAM-3 
and functions as a ligand for LFA-1. The deduced 518-amino acid sequence of the predicted 
mature protein defines a highly glycosylated type I integral membrane protein with five 
immunoglobulin (Ig)-like domains. The five Ig-like domains of ICAM-3 are highly homologous 
with those of human ICAM-1 (52% identity) and human ICAM-2 (37% identity). 

T hree counter-receptors have been described for the leu- 
kocyte integrin LFA-1, intercellular adhesion molecule 

1 (ICAM-1), ICAM-2, and ICAM-3 (1-5). Both ICAM-1 
and ICAM-2 have been cloned and are members of the Ig 
supergene family. ICAM-3 was defined with a mAb that in- 
hibited a pathway of lymphoblastoid cell adhesion to purified 
LFA-1 that was independent of ICAM-1 and ICAM-2 (5). 
In contrast to ICAM-1 and ICAM-2, ICAM-3 is absent from 
endothelium and expressed solely on leukocytes. ICAM-3 is 
a heavily glycosylated protein of 124,000 Mr that is well ex- 
pressed on resting lymphocytes, monocytes, and neutrophils, 
representing the major LFA-1 ligand on these cells (5). Al- 
though an exact role for ICAM-3 is yet to be established, 
the finding that adhesion of resting T lymphocytes to purified 
LFA-1 occurs primarily via ICAM-3, combined with the fact 
that ICAM-3 is much better expressed than the other LFA-1 
ligands on monocytes and resting lymphocytes, implies an 
important role in the initiation of immune responses. We 
now report the cloning and characterization of human 
ICAM-3. 

Materials and Methods 
Monoclona! Antibodies. The following previously described rou- 

tine mAbs to human antigens were used: TS1/22 (anti-CD11a, 
IgG1) (6), CBK-IC3/1 (anti-ICAM-3, IgG1) (5), W6/32 (anti- 
HLA, A, B, C, IgG2a) (7), and X63 (nonbinding antibody, IgG1). 
CBK-IC3/2 (anti-ICAM-3, IgG2a) was generated by immunizing 
mice with purified ICAM-3 and screening hybridomas for reac- 
tivity to purified ICAM-3 and ICAM-3-bearing cells (A. de Fou- 
gerolles et al., manuscript in preparation). All mAbs were used 

at a saturating concentration of 20 #g/ml for flow cytometry and 
adhesion assays. 

Purification of ICAM-3 and Peptide Sequencing. ICAM-3 was 
purified from detergent lysates of human tonsil by immunoaffinity 
chromatography at 4~ using the anti-ICAM-3 mAb CBR-IC3/1. 
mAb CBR-IC3/1 was purified from ascites on a protein A affinity 
column (8) and then coupled to cyanogen bromide-activated 
Sepharose Cb4B (Pharmacia Fine Chemicals, Piscataway, NJ) (9). 
Frozen human tonsils (30 g) were finely diced and lysed in 450 
ml lysis buffer (100 mM Tris HC1, pH 8.0, 150 mM NaC1, 2% 
Triton X-100, 5 mM iodoacetamide, 1 mM PMSF, 0.24 trypsin 
inhibitor units (TIU)/ml aprotinin, 0.025% azide) for 90 min while 
stirring gently. The resultant lysate was centrifuged at 10,000 g 
for 2 h; the supernatant was decanted and subjected to ultracen- 
trifugation at 100,000 g for I h. The clarified lysate was precleared 
with human Ig-coupled Sepharose (40 pl of a 1:1 slurry/ml of ly- 
sate) during rotation overnight. The human Ig-coupled Sepharose 
was pelleted and the prechared lysate passed over the CBR-IC3/1 
immunoaffinity column (bed volume, 6 ml; 3 mg/ml CBR-IC3/1) 
at a rate of 30 ml/h. The column was sequentially washed at 30 
ml/h with 20-bed volumes 50 mM Tris-HC1, pH 8.0, 150 mM 
NaC1, 0.1% Triton X-100, and with 10-bed volumes 50 mM Tris- 
HC1, pH 8.0, 150 mM NaC1, 1% octyl B-D-glucopyranoside (OG). 
ICAM-3 was eluted from the immunoaffinity column with 10-bed 
volumes of 50 mM glycine, pH 3.8, 150 mM NaCI, 1% OG, and 
neutralized with 1:10 vol 1 M Tris, pH 8.6, 1% OG, aliquoted, 
and stored frozen at -70oC for 3-6 mo without loss of activity. 

ICAM-3 fractions were pooled and concentrated by centrifugal 
ultrafiltration (Centricon-30; Amicon, Beverly, MA), subjected to 
SDS-7.5% PAGE under reducing conditions, and protein electro- 
blotted onto nitrocellulose (Schleicher & Schuell, Inc., Keene, NH). 
The nitrocellulose-blotted proteins were excised and subjected to 
in situ enzymatic cleavage with lysyl endoproteinase (LYS-C) (10). 
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Cleaved fragments were separated by reverse-phase HPLC (11). Pep- 
tides were subjected to microsequence analysis on a gas phase 
microsequenator (Applied Biosystems, Inc., Foster City, CA). 

Construction and Screening of cDNA Libraries. A human tonsil 
cDNA library in Xgt11 (accession no. 37546; American Type Cul- 
ture Collection, Kockville, MD) (12) with inserts of 2 kb or greater 
was screened as described (13). Partially degenerate antisense oli- 
gonucleotides were based on the ICAM-3 peptide sequences, the 
codons used in homologous sequences in ICAM-1 and ICAM-2, 
and general human codon usage frequency (14): peptide 10, the 
25met 5' TTNAG(G/A)TG(C/T)TGNGG(G/A)CANGTNGCNC 
3'; peptide 17, the 23mer 5' A(G/A)NGANGTCTCCAG(G/A)GC- 
(G/A/T)AT(T/C)TT 3' (N = inosine). End labeling and hybrid- 
ization of oligonucleotides was as described (13). Inserts from 
hybridizing phage were excised using EcoRI and subcloned into 
plasmid pBluescript KS- (Stratagene, San Diego, CA) for restric- 
tion mapping and sequence analysis. 

Sequencing and Homology. Nucleotide sequence was determined 
by the dideoxynucleotide chain termination method with modified 
T7 DNA polymerase (U.S. Biochemical Corp., Cleveland, OH). 
T7 and RM13 primers (New England Biolabs, Beverly, MA) were 
used to sequence the 5' and 3' ends of the ICAM-3 clones and in- 
ternal primers were synthesized based on sequencing results. The 
sequence on both strands was determined for the entire 11.2 cDNA 
clone, for the 5' end and the 3' SacI-EcoKI fragment of clone 7.3.1, 
and for the 5' EcoRI-EcoNI fragment of clone 14a2.2. The ends 
of all clones were sequenced on one strand. 

cDNA Transfection. A full-length ICAM-3 cDNA was con- 
structed by ligating in 5' to 3' order the fully sequenced 0.24-kb 
HindlII-EcoNI fragment of clone 14a2.2, the 1.24-kb EcoNI-SacI 
fragment of clone 11.2, and the 0.35-kb SacI-EcoKI fragment of 
clone 7.3.1.. The HindlII and EcoKI sites were present in the 
pBluescript polylinker. The fragments were subcloned into the tran- 
sient expression vector AIYM9 (a derivative of CDM8 containing 
the 3-1actamase from pBluescript and a polylinker from pSP64; L. B. 
Klickstein, unpublished results) cut with HindIII and EcoRI to 
yield pCDIC-3. The pCDIC-3 or AprM9 plasmids were trans- 
fected into COS cells using DEAE-dextran (15). 3 d after transfec- 
tion, cells were detached with HBSS, 10 mM EDTA, washed three 
times in 10% FCS, RPMI 1640, and used for flow cytometry or 
binding to LFA-l-coated plates. 

Flow Cytometry. Indirect immunofluorescence and flow cytom- 
etry were performed as previously described (3). 

Adhesion Assay. Adherence of COS cell transfectants to purified 
LFA-1 absorbed onto 96-well polystyrene microtiter plates was quan- 
titated by fluorescence as previously described (3). Site density of 
LFA-1, determined by radioimmunoassay using saturating amounts 
of 12SI-TS1/22 mAb and calculated assuming monovalent binding 
of the mAb, was 700 sites/#m 2. 

Fluorescently labeled COS cells were pretreated with 20 #g/ml 
of purified mAb for 30 min at room temperature, and 5 x 104 
cells in 50/A were transferred to each well. Some wells were 
pretreated for 30 min at room temperature with 20 #g/ml of purified 
TS1/22 mAb to LFA-1. Cells were allowed to settle and adhere 
to the solid-phase LFA-1 for 1 h at 37~ and washed with four 
aspirations through a 25-gauge needle. Bound cells were quanti- 
tated in the 96-well plate using a Pandex fluorescence concentra- 
tion analyzer (IDEXX Corp., Westbrook, ME). 

Results 

ICAM-3 purified from human tonsil by mAb affinity chro- 
matography was homogeneous by SDS-PAGE (Fig. 1). At- 

Figure I. SDS-PAGE oflCAM-3 
purified from human tonsil. Ali- 
quots of successive fractions of the 
pH 3.8 ehate from the CBR- 
IC3/1 mAb Sq, haro~ (10 ~1) were 
subjected to SDS-7.5% PAGE un- 
der reducing conditions and silver 
stained. Fractions shown in lanes 
2-8 were pooled, and subjected to 
preparative SDS-PAGE for sequenc- 
ing studies. Molecular weight 
markers were myosin (200,000), 
3-galactosidase (116,000), rabbit 
muscle phosphorylase b (97,000), 
BSA (68,000), hen egg OVA 
(43,000), and bovine carbonic an- 
hydrase (29,000). 

tempts to obtain NH2-terminal sequence were unsuccessful, 
suggesting that the NH2-terminus was blocked. To obtain 
internal amino acid sequence, blotted material was digested 
with Lys-C protease. Reverse-phase HPLC yielded a small 
number of peptide peaks that were subjected to gas-phase 
microsequencing. The sequence ofpeptide 17, IALETSLSK, 
was significantly homologous to ICAM-1 and ICAM-2 in 
a region of the first Ig-like domain. The sequence of peptide 
10, IDRATCPQHLK, was weakly homologous to the fifth 
Ig-like domain of human ICAM-1. 

The sequence of each peptide was used to design an oligo- 
nucleotide probe. One clone (11.2) was isolated from a size- 
selected )xgtll tonsil cDNA library that hybridized to both 
oligonucleotides probes, and yielded an insert of 1.6 kb. This 
clone and its 5' EcoRI-EcoNI fragment were utilized to iso- 
late cDNA clones that extended further in the 5' and Y direc- 
tions. The overlapping cDNA clones were subjected to re- 
striction mapping (Fig. 2) and sequencing (EMBL/GenBank/ 
DDBJ accession number X69819). The two peptide sequences 
were in perfect agreement with the translated amino acid se- 
quence (Fig. 3, thin overlining), establishing the authenticity 
of the cDNA as that of ICAM-3. Two potential ATG initia- 
tion codons at nucleotide positions 9 and 18 are present, both 
of which fit Kozak's criteria for a translation initiation site 
(16). The first initiation codon is followed by an open reading 
frame of 1,641 bp. An in-frame stop codon (TGA) at posi- 
tion 1650 is followed by an untranslated region of 79 bp. 
The poly(A) tail is present 15 bp after a consensus polyade- 
nylation sequence at position 1710. 

The deduced amino acid sequence of the mature protein 
is shown in Fig. 3. Hydrophobicity analysis (17) suggests the 
presence of an NH2-terminal signal peptide sequence and a 
25-amino acid transmembrane segment near the COOH ter- 
minus, and thus ICAM-3 is a type I membrane protein. A 
consensus signal peptide cleavage site (18) predicts that gluta- 
mine is NH2 terminal in the mature polypeptide chain. This 
is consistent with our inability to obtain an NH2-terminal 
amino acid sequence as glutamine may cyclize to pyroglu- 
tamic acid, resulting in a blocked NH2 terminus. The ma- 
ture ICAM-3 polypeptide chain contains a 456-amino acid 
NH2-terminal region predicted to be extracellular and a 
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Figure 2. Restriction map of ICAM-3 
cDNA clones. The top line is the map 
of the fuU-length cDNA assembled as 
described in Materials and Methods. (K, 
KpnI; P, PstI; En, EcoNl; Bx, BstXI; 
B, BamHI; Bg, BglI; Sm, SmaI; X, 
XhoI; Pv, PvulI; and S, SacI). EcoRI 
and HindlIl sites present in the pBlue- 
script KS- polylinker are not shown. 
The open reading frame is shown as a 
thick line. 

Dlr ~ �9 �9 W .  , �9 W W  �9 W. 
hICAM-3 ...QEFLLR•EPQNP•L•AGGSLFVN•STDC•SSEKIALETSLSK.EL•ASGMG.WAAFNLSNVTGNSRIL•SVYCNGSQ 75 
hICAM-I ...... qts s skvi pr vl t s dqpkllgi p p k llp nn. kvye qed qpm ysn pdg 73 
mICAM-I ...... qvsih reaf pq vq ss kedlslg qwl d .e pn.rkl e eiged sp fen gtv 72 
hICAM-2 sdekv evh r kklavepk e t nqp vgg nil deqaq., khylv ishdtvlq hft s k 78 
mICAM-2 sgeka evyiwsekqive te wk n aapdmgg ptn im eehpq k kq iv skdtvff hft s k 80 

�9 ~21 " ~  �9 
hICAM-3 ITGSSNITVYGLPERVELAPLPPWQPVGQNFTLRCQVEGGSPRTSLTWLLRWEEELSRQPAVE...EPiEVTATV..LI 150 
hlCAM-I s aktfl wt s k i a an g k k e g... t .. v 148 
mlCAM-I ssa at sf s r a q kdl h d a q sa g i vgghpkd k i f .. 150 
hlCAM-2 esmn vs qp rq i tlq tlva ks ie r ptve Id if f gnt hyetfgkaapa q a fnst 158 
mICAM-2 hse 1 r qp aq t klq rvf ed iet spvq ler Is gr t kn tfggaetv q a fnst 160 

�9 . D3~ 
hICAM-3 SRDDHGA~FSCRTELDMQ~QGLGLFVNTSA~RQ~RTFVLPVT~RLVAPRFLEVETSW~VDCTLDGLF~ASEAQVYLALG 230 
hICAM-I r h n Ir e e y q a q s v d qgt v s v h 228 
mICAM-I g n Ir a s vea s d a i k dt dl g qqklf s e ri e 230 
hICAM-2 d e ghrn lay Imsr gni hkh km eiye .......................................... 196 
mICAM-2 Ikk gl.n qa Ir h gyiirsi eyqi evye .......................................... 198 

�9 �9 W. D4~ . V  
hICAM-3 DQMLNATVMNHGDTLTATATATAR~QEGAREIVCNVTLGGERREARENLTVFSFLGPIVNLSEPTAHEGSTVTVSCMAG 310 
hICAM-I r p tygn sfs k svsvt ed tqrlt a i nqsq tlqtv iy pan i tk evs te k e h 308 
mlCAM-I g ptqest ss svs Ivevteefdrtlplr vle adqil tqrt yn sa vlt qlevs q k e h 310 

�9 . v  D~" 
hlCAM 3 AR~QVT~LDGV~AAA~GQ~AQLQLNATESDDGRSFFC~ATLE~f~GEFLHRN~SVQLRVLYGP~DRATCpQHLKWKD~TR 389 
hICAM-I p ak . n qpl pr 1 k pen s a qli k qtre rl erd gnwt pensq 387 
mICAM-I sgsk vl s eprp tpqv ft sse hkp a a k fk qtle h rl etd ignwt qegsq 390 

�9 �9 TM~ 
hICAM-3 HVLQCQARGN~Y~ELRCLK[EGSSREV~VGIpFFVNVTHNGTYQCQASSSRG~YTLVVVMDIEAGSSH.~FV~VFVAVLL 466 
hICAM-I qtpm w 1 k ..dgtfpl i esvt trdle 1 r r tq ev re EvlRvl., prye..i lit va 461 
mICAM-I qt k w s kmt rrkadgal.l i wks kqem v h f h nv rn yltvlyh qnnw..tiiil pv 467 
hICAM-2 ................................................................ pv dsqm iivtv sv 212 
mICAM-2 ................................................................ pmqdnqm iii v si 214 

Cyt~ 

hICAM-3 TLGWTIVLALMYVF...REHQR.SGSYHVREESTYLPLTSMQPTEAMGEEPSRAE 518 
hICAM 1 aavimgtaglst lyn .... r kikk rlqqaqkgt mkpntqatpp ........ 505 
mICAM-I 1 vivgl m as yn .... r kiri k]qkaqee.aiklkgtappp ........ 510 
hIC~M-2 1 slfvts.v icfifgqhlr qrm t g raawrr qafrp ............. 256 
mICAM-2 1 flfvts.v icfifgqhw r rt t g laawrr rafrarpv .......... 259 

F i g u r e  3. Homology of ICAM-3 
with ICAM-1 and ICAM-2. The se- 
quences of ICAM-3, mouse and human 
ICAM-1 (23, 24), and mouse and 
human ICAM-2 (19, 25) were aligned 
using the GCG PileUp (26) program 
and by inspection. The amino acid se- 
quence of ICAM-3 was deduced from 
the cDNA sequence. The amino acid 
sequences of Lys-C-deaved peptides are 
overlined, and potential N-linked gly- 
cosylation sites are indicated by inverted 
triangles. The entire mature sequence 
of ICAM-3, and residues in ICAM-1 
and ICAM-2 that differ from ICAM-3, 
are shown. Gaps appear as dots. Bound- 
aries of the Ig-like domains and bound- 
ary of D5 with the transmembrane do- 
main are based on exon boundaries of 
ICAM-1 (27) and ICAM-2 (19). 

Tab le  1. Identities between ICAM Ig-like Domains 

ICAM-1 ICAM-2 ICAM-3 

ICAM-3 D1 D2 D3 D4 D5 D1 D2 D1 D2 D3 D4 D5 

D1 38 16 27 21 23 36 18 - 

D2 30 77 22 23 28 26 38 16 - 

D3 15 26 52 22 20 25 23 29 21 - 

D4 21 25 23 51 18 9 22 17 24 20 - 

D5 14 13 22 20 37 16 13 19 20 14 20 

Percent amino acid identity between Ig-like domains was determined with 
the GAP program from GCG (26). Bold numbers represent comparison 
of ICAM-3 domains with the corresponding ones in ICAM-1 or -2. 

37-amino acid putative cytoplasmic region. The predicted 
518-amino acid mature polypeptide chain backbone of 
ICAM-3 is 56,980 Mr. Native ICAM-3 was found to mi- 
grate as a protein of 124,000 Mr in SDS-PAGE, and upon 
N-glycanase treatment yielded a broad band of 87,000 Mr 
(5). In parallel experiments, ICAM-2 and HLA were cleaved 
to the size predicted for their polypeptide chain backbones; 
they were converted from diffuse to sharp bands in SDS-PAGE, 
whereas the ICAM-3 band remained diffuse. ICAM-3 has 
15 putative N-linked glycosylation sites. The discrepancy with 
the predicted polypeptide backbone and the apparent hetero- 
geneity after N-glycanase treatment suggests either the pres- 
ence of additional posttranslational modifications, or the re- 
sistance of some N-linked sites to N-glycanase. No obvious 
proteoglycan or O-linked glycosylation sites are present. The 
frequency of N-linked sites, with 1 every 30 amino acids, is 
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unusually high for a cell surface glycoprotein. Some of these 
sites, particularly closely paired sites at residues 55 and 58, 
and at residues 424 and 428, may be resistant to N-glycanase. 
If so, the average size of the N-linked chains is 4,500 Mr. 

The extracellular region of ICAM-3 contains five Ig-like 
domains and is strikingly homologous to ICAM-1 and 
ICAM-2 (Fig. 3). Like ICAM-1 and ICAM-2, the Ig-like 
domains of ICAM-3 are of the C2 set, and the first Ig-like 
domain contains two putative intradomain disulfide bonds. 
The extracellular five Ig-like domains of ICAM-3 are 52% 
identical in amino acid sequence to the corresponding region 
in human ICAM-1, with the highest identity contained within 
domain 2 and the first half of domain 3. The homology with 
ICAM-2 is lower (Table 1). All ICAM-3 Ig-like domains are 
most closely related to the domains with the corresponding 
position in ICAM-1 and ICAM-2 (Table 1). The transmem- 
brane and cytoplasmic domains of ICAM-3 show little if any 
conservation with those of ICAM-1 and ICAM-2. 

To express ICAM-3, cDNA segments from clones 14a2.2, 
11.2, and 7.3.1 were ligated together to obtain a full-length 
cDNA clone. COS cells transfected with the ICAM-3 cDNA 
reacted specifically with the anti-ICAM-3 mAb, CBR-IC3/1 
(Fig. 4). Transfectants expressing human ICAM-3 bound 
efficiently to purified human LFA-1 on plastic (Fig. 5). By 
contrast, mock-transfected cells bound poorly, showing equiva- 
lent binding to substrates bearing LFA-1 and BSA. Binding 
to LFA-1 of COS cells transfected with ICAM-3 was blocked 
by LFA-1 mAb, and by a combination of anti-ICAM-3 mAbs. 

Cv' 
LLI 

A 

I 10 100 1000 

FLUORESCENCE INTENSITY 
Figure 4. Surface expression of TCAM-3 on COS cells. COS cells trans- 
fected with (A) Ap~M9 vector alone (mock) or (B) pCDIC-3 were la- 
beled with saturating amounts of control mAb X63 (thin line) or mAb 
CBR-IC3/1 (anti-ICAM-3), followed by FITC-anri-mouse Ig. Cells were 
subjected to immunofluorescent flow cytometry. 

ICAM-3 

MOCK 

i i i 

10 20 30 

Transfectants Bound (%) 

mAb p r e t r e a t m e n t  

�9 No mAb 

i W6/32 
[ ]  CBR-IC3/1 
[ ]  CBR-IC3/2 
[ ]  CBR-IC3/I + IC3/2 
[ ]  TS1/22 
[ ]  Control (No LFA-I) 

i 

40  

Figure 5. Adhesion of transfected COS cells to purified LFA-1. Cells 
transfected with pCDIC-3 or ALUM9 alone (mock) were allowed to bind 
to LFA-l-coated microtiter wells for 60 min at 37~ and then washed 
four times by aspiration. Control wells lacked LFA-1. Cells were pretreated 
with the indicated mAb or, alternatively, the absorbed purified LFA-1 was 
pretreated with mAb TS1/22 (anti-LFA-l~x). To achieve effective blockade 
of the ICAM-3/LFA-1 adhesion pathway both anti-ICAM-3 mAbs are 
required. One representative experiment of four is shown and error bars 
indicate 1 SD. 

Discussion 
We have characterized a cDNA clone for ICAM-3. Its 

authenticity is proven by the presence in the translated amino 
acid sequence of the two Lys-C-cleaved ICAM-3 peptide frag- 
ments. Additionally, when expressed, the ICAM-3 cDNA 
is recognized by anti-ICAM-3 mAbs and is functionally ac- 
tive in binding to purified LFA-1. 

The cloning and analysis of the human ICAM-3 cDNA 
demonstrates ICAM-3 to be a type I integral membrane pro- 
tein belonging to the Ig superfamily. ICAM-3 is the most 
heavily glycosylated LFA-1 ligand with 15 putative N-linked 
glycosylation sites, as compared with eight and six for ICAM-1 
and -2, respectively. The apparent size of the carbohydrate 
is high for ICAM-3 at 4,500 Mr per site, as it is for ICAM-1 
and ICAM-2, which average 5,000 and 5,250 Mr per site, 
respectively. 

The sequence relationships among the extracellular domains 
of the three ICAMs define them as a subfamily of the Ig su- 
perfamily. The homology between ICAM-1 and ICAM-3 is 
particularly striking, with 52% amino acid identity and the 
same number of Ig domains. The first two domains of ICAM-3 
are closely related to the two domains of ICAM-2, with 37% 
identity. The relationship with all other Ig superfamily 
members is much weaker, on the order of 20%. Compar- 

~ ICAM.1 

PrimordlallcAM ~ ~ - " - " ' ~  ICAM-3 

ICAM-2 
c~ 4o 2o 6 

% Difference in Amino Acid Sequence 
Figure 6. Evolutionary relationship of the ICAMs. The horizontal axis 
represents the percent difference in amino acid sequence of the extracel- 
lular domains. 
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isons of individual Ig-like domains of ICAM-3 with those 
in ICAM-1 and ICAM-2 show that the ICAM-3 Ig-like do- 
mains are most closely related to the corresponding domains 
in ICAM-1 or ICAM-2. These relationships suggest that 
ICAM-1, -2, and -3, evolved from a primordial ICAM gene 
in two steps (Fig. 6). 

In contrast to the extracellular domains, there is little con- 
servation of the transmembrane and cytoplasmic domains 
among ICAM-1, -2, and -3. However, these domains are well 
conserved between mouse and human ICAM-1, and between 
mouse and human ICAM-2. Thus, there may be important 
differences among ICAMs in localization on the cell surface, 
interaction with the cytoskeleton, and signaling. 

The ICAM molecules were identified and named based on 
their ability to bind LFA-1 (3, 5, 19). Since all three ligands 
are homologous, we predict that the ligand recognition sites 
lie in homologous positions and contain key conserved residues. 
The binding site for LFA-1 has been mapped in ICAM-1 to 
the first Ig domain and key residues have been identified as 
E34 and Q73 (20). Both of these residues are conserved in 
ICAM-3 and in ICAM-2 (Fig. 3). However, compared with 
other domains in ICAM-3, domain I is one of the least well 
conserved with ICAM-1. The reason for the high level of 
identity (77%) between the second Ig-like domains of ICAM-1 

and ICAM-3 remains unclear, because no ligand binding sites 
have been mapped to this domain. The third Ig-like domain 
of ICAM-1 is the binding site for the integrin Mac-1 (21); 
whether ICAM-3 also binds to Mac-1 is not known. 

The existence of a subfamily of Ig-related molecules con- 
taining three members, ICAM-1, -2, and -3, that has evolved 
to bind to the integrin LFA-1 attests to the importance of 
this adhesion pathway. The multiplicity of ICAMs may allow 
finer regulation of this adhesion pathway since there are 
significant differences in tissue distribution and inducibility. 
ICAM-1 is highly inducible in immune and inflammatory 
reactions on many cell types (1), whereas ICAM-2 is consti- 
tutively expressed on endothelium (3). Thus, these molecules 
may regulate leukocyte circulation and localization patterns 
in disease and health, respectively. ICAM-3 is well expressed 
on all leukocytes and absent from nonhematopoietic cells. 
As ICAM-3 represents the major LFA-1 ligand on resting 
lymphocytes (5), it may play an important role in initiating 
immune responses. The distinct transmembrane and cyto- 
plasmic domains of the ICAMs provide further diversity. The 
cytoplasmic regions of ICAM-1, -2, and -3 may impart 
different signals when LFA-1 is bound or cause differing locali- 
zations on the cell surface (22). 
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Note added in proof While this paper was in review, two other groups reported a eDNA encoding an 
LFA-1 ligand that was similar in tissue distribution and molecular weight, but not tested for identity 
with ICAM-3 (28, 29). The sequence of one (29) is identical to that reported here; the other (28) has 
two silent substitutions at nucleotide positions 187 and 1268 in our sequence and a 2-bp deletion after 
the polyadenylation signal. 
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