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Conformational change in the integrin extracellular
domain is required for high affinity ligand binding and
is also involved in post-ligand binding cellular signal-
ing. Although there is evidence to the contrary, electron
microscopic studies showing that ligand binding trig-
gers �- and �-subunit dissociation in the integrin head-
piece have gained popularity and support the hypothe-
sis that head separation activates integrins. To test
directly the head separation hypothesis, we enforced
head association by introducing disulfide bonds across
the interface between the �-subunit �-propeller domain
and the �-subunit I-like domain. Basal and activation-
dependent ligand binding by �IIb�3 and �V�3 was unaf-
fected. The covalent linkage prevented dissociation of
�IIb�3 into its subunits on EDTA-treated cells. Whereas
EDTA dissociated wild type �IIb�3 on the cell surface, a
ligand-mimetic Arg-Gly-Asp peptide did not, as judged
by binding of complex-specific antibodies. Finally, a
high affinity ligand-mimetic compound stabilized non-
covalent association between �IIb and �3 headpiece frag-
ments in the presence of SDS, indicating that ligand
binding actually stabilized subunit association at the
head, as opposed to the suggested subunit separation.
The mechanisms of conformational regulation of inte-
grin function should therefore be considered in the con-
text of the associated �� headpiece.

Integrins are major metazoan adhesion receptors that play a
fundamental role in cellular organization. They mediate cell-
extracellular matrix as well as cell-cell adhesion, connect ex-
tracellular cues to the cytoskeleton, and activate many intra-
cellular signaling pathways (1, 2). One unique aspect of
integrins is that the affinity of their extracellular domain for
biological ligands can be rapidly up-regulated by signals from
within the cell. Rapid and precise control of integrin activation
is particularly important for leukocytes and platelets, which
circulate in the vascular system, where leukocyte emigration
and thrombus formation mediated by integrins must be trig-
gered only at the appropriate location. Integrins compose two
noncovalently associated type I transmembrane glycoprotein �-
and �-subunits (3). A crystal structure of the extracellular
domain of the integrin �V�3 revealed a bent conformation, in
which there is an acute angle between the headpiece and tail-

piece (4), and an extensive headpiece-tailpiece interface (5).
Recently, we have shown that the bent conformation repre-
sents the low affinity receptor and that activation is associated
with a switchblade-like motion of the headpiece resulting in a
highly extended conformation (5).

The integrin headpiece contains the ligand-binding site. The
headpiece contains the �-subunit �-propeller and thigh do-
mains and the �-subunit I-like and hybrid domains (Fig. 1),
corresponding approximately to the N-terminal two-thirds of
the extracellular domain of each subunit. A crystal structure
with a bound ligand-mimetic peptide revealed that ligand
binds to an interface formed by the �-subunit I-like domain and
�-sheets 2–4 of the �-subunit �-propeller domain (6) (Fig. 1).

Many experiments support the idea that the inter-subunit
association at the cytoplasmic region maintains integrins in
low affinity state (7–10). Originally, this notion led to a “hinge
hypothesis,” where association/dissociation of the cytoplasmic
tails caused hinging between the two subunits, and ultimately
changed the conformation of the ligand-binding extracellular
segments (11). However, the nature of the conformational
change that regulates ligand binding by integrins has been
controversial (2, 3, 5, 12–15). Hantgan et al. (16, 17), using
rotary shadowing EM, reported that binding of RGD peptides
induced separation of the headpiece of detergent-solubilized
�IIb�3. These images suggested a wide separation in the head-
piece, with no interaction remaining between the N-terminal
halves of the �- and �-subunits. These observations have been
highly influential, in part because they seemed to fit with
earlier schematics of integrin activation models where a hinge-
like motion at the transmembrane domains is transmitted
through rigid �- and �-subunit tailpiece segments to the head-
piece, resulting in movement apart of the �- and �-subunits in
the headpiece (11, 12, 18). However, recent high resolution
negative stain EM studies have shown that the �-subunit leg
can exist in two distinct conformations with respect to the
headpiece and that the �-subunit leg is highly flexible (5).
Existence of multiple modular domains (4) also disfavors rigid
movement of the entire stalk region. Because the legs are
flexible, it is hard to imagine that information can be transmit-
ted to the headpiece as proposed in the hinge model. Further-
more, high resolution EM studies (5), as well as many other EM
studies (19–22), have shown that ligand binding to integrins is
not accompanied by head separation.

There are other reasons for the popularity of the head sepa-
ration model. First, it has been suggested that residues that
have been implicated in ligand binding are buried in the head-
piece and that separation could expose them, resulting in
higher affinity binding (2). Second, there is the mystery of the
synergy site in fibronectin type III module 9 of fibronectin,
which is distant from the RGD site in module 10. It has been
proposed that separation of the headpiece (2, 15) would facili-
tate simultaneous binding of the �-subunit to the synergy site
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and the �-subunit to the RGD site (23). However, the liganded
�V�3 crystal structure shows that the Arg of RGD binds to the
�-subunit and the Asp of RGD binds to the �-subunit (6),
strongly suggesting that headpiece separation would disrupt
binding to RGD. Third, there are structural homologies be-
tween integrins and G proteins (4, 24, 25). By taking this
analogy further, it has been suggested that upon integrin ac-
tivation, the �-propeller and I-like domains might dissociate
analogously to the G protein �- and �-subunits (2, 15).

An alternative model for integrin activation has been pro-
posed that is supported by high resolution EM, physicochemi-
cal studies, ligand binding assays, introduction of disulfide
bonds that lock in the bent conformation, and localization of
epitopes that become exposed after integrin activation (5, 26).
In this model, activation is regulated by the conformational
equilibrium between three states as follows: a bent conforma-
tion with low affinity, an extended conformation with a closed
headpiece with intermediate affinity, and an extended confor-
mation with an open headpiece with high affinity. Binding of
RGD peptide was found not to induce head separation but to
induce a dramatic change in angle between the �-subunit I-like
and hybrid domains, leading to the swing-out of the hybrid
domain away from the �-subunit (5). The prominence of the
hybrid domain in the interface between the headpiece and the
tailpiece in the bent conformation provides a mechanism for
linking the change in angle upon ligand binding to the equilib-
rium between the bent and extended integrin conformations
(5).

Definitive experimental testing of the head separation model
is important. Therefore, we have used mutagenesis to intro-
duce disulfide bonds between the �-subunit �-propeller domain
and the �-subunit I-like domain, and we have tested the effect
of preventing head separation on activation of �IIb�3 and �V�3

integrins on the cell surface. Furthermore, we test the effect of
ligand-mimetic compounds on the association between the �-
and �-subunits in native integrins on the cell surface and in
soluble integrin fragments that contain only the headpiece.

EXPERIMENTAL PROCEDURES

Monoclonal Antibodies—Mouse monoclonal antibody (mAb)1 PT25-2
recognizing human �IIb subunit (27) was a gift from Dr. M. Handa (Keio
University, Tokyo, Japan). Mouse mAb 10E5 recognizing the human
�IIb�3 complex (28) was a gift from Dr. B. S. Coller (Rockefeller Univer-
sity, New York). Mouse anti-�3 AP3 was from American Type Culture
Collection. All other mAbs were obtained from the Fifth International
Leukocyte Workshop (29).

Plasmid Construction, Transient Transfection, and Immunoprecipi-

tation—Plasmids coding for full-length human �IIb, �V, and �3 were
subcloned into pcDNA3.1/Myc-His(�) or pEF/V5-HisA as described pre-
viously (5). Mutants were made using site-directed mutagenesis, and
DNA sequences were confirmed before being transfected into 293T cells
using calcium phosphate precipitation. Transfected cells were metabol-
ically labeled with [35S]cysteine/methionine as described (5). Labeled
cell lysates were immunoprecipitated with anti-�3 AP3, eluted with
0.5% SDS, and subjected to nonreducing or reducing SDS-7.5% PAGE
and fluorography.

Two-color Ligand Binding and Flow Cytometry—Binding of fluores-
cein-labeled human fibrinogen and fibronectin were performed as pre-
viously described (5). To test the effect of EDTA treatment on mAb
epitope expression, transiently transfected 293T cells were preincu-
bated in 20 mM Tris-buffered saline, pH 8.4, containing either 1 mM

Ca2�, 1 mM Mg2�, or 5 mM EDTA at 37 °C for 30 min, followed by
washing and resuspension in 20 mM Hepes, 150 mM NaCl, 5.5 mM

glucose, 1% bovine serum albumin, and 1 mM Ca2�, 1 mM Mg2� (HBS).
Cells were then incubated with mAbs on ice for 30 min, followed by
staining with FITC-conjugated anti-mouse IgG and flow cytometry. To
test the effect of RGD peptide on mAb epitope expression, cells in HBS
were incubated with 100 �M GRGDSP peptide at room temperature for
30 min before adding mAbs and staining as above.

Stability of the �IIb�3 Headpiece in SDS in the Presence of an RGD-
mimetic Compound—An integrin headpiece fragment comprising �IIb

residues 1–621 and �3 residues 1–472 was produced in Chinese ham-
ster ovary Lec 3.2.8.1 cells stably transfected with plasmids coding for
each fragment. Acid-base �-helical coiled-coil peptides were fused to the
C termini of the �- and �-subunits to increase the stability of the
heterodimer. Methods were as described previously (8). A hexahistidine
tag was also attached to the C terminus of the �-subunit to facilitate
purification by nickel chelate chromatography (8). The purified head-
piece fragment was treated with 10 �g/ml chymotrypsin for 16 h at
25 °C to remove the C-terminal clasp, and incubated with the high
affinity RGD-mimetic compound L738,167 (gift from Dr. G. D. Hart-
man, Merck) (30) at 10 �M for 30 min at 37 °C. The mixture was cooled
to room temperature; an equal volume of sample buffer containing 0.1%
SDS was added, and samples were immediately subjected to nonreduc-
ing SDS-PAGE on a 4–20% gradient gel.

RESULTS

Introduction of Disulfide Bonds between the �-Propeller and
I-like Domains—To make mutant integrins that were unable to
undergo head separation, we mutationally introduced cysteine
residues at the interface between the �IIb �-propeller and �3

I-like domains (Fig. 1). Inspection of the structure of �V�3 and
a model of �IIb�3 made from the �V�3 template identified can-
didate positions for disulfide bonds where C� distances be-
tween �-propeller and I-like domain residues were within 7 Å.
Disulfide-forming efficiency was assessed by transient trans-
fection of 293T cells followed by immunoprecipitation and non-
reducing SDS-PAGE. Preliminary experiments revealed that
the efficiency varied from 20 to 100%, depending on the com-
bination of residues chosen (data not shown). In �V�3, the
combination of the �V-M400C and �3-Q267C mutations gave

1 The abbreviations used are: mAb, monoclonal antibody; FITC, flu-
orescein isothiocyanate.

FIG. 1. The �V�3 integrin headpiece
and location of introduced disulfide
bonds. The stereo view of the �V�3 head-
piece is based on the crystal structure of
the �V�3 extracellular domain bound to a
ligand-mimetic RGD peptide (6). The �V
�-propeller and thigh domains are red;
the �3 I-like and hybrid domains are blue,
and engineered disulfide bonds are in
gold. The bound RGD peptide is magenta,
and its Arg and Asp side chains are
shown. Backbones are shown as a worm-
like trace. Note that the disulfide bonds
introduced by mutations �V-M400C/
�3-Q267C and �V-E311C/�3-G293C (which
corresponds to �IIb-E324C/�3-G293C) are
located on the side of the �-propeller and
I-like domain interface opposite from the
ligand-binding site. Figure was prepared
with Ribbons (44).
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�100% formation of an intersubunit disulfide bridge as indi-
cated by the formation of a high molecular weight band in
nonreducing SDS-PAGE (Fig. 2, compare wild type in lane 1
and double mutant in lane 2), whereas the �V- and �3-subunits
migrated separately in reducing SDS-PAGE (Fig. 2, lanes 3 and
4). The combination of �V-E311C and �3-G293C mutations
resulted in slightly less efficient disulfide formation (�70%,
data not shown). Since �IIb lacks the long loop containing M400
in �V, the mutation corresponding to �V-E311C (�IIb-E324C)
was tested and shown to form an efficient disulfide when cou-
pled with the �3-G293C mutation (Fig. 2, compare lane 6 with
wild type in lane 5). Under reducing conditions, the disulfide-
linked complex was reduced into individual �- and �-subunits
indistinguishable from the wild type subunits (Fig. 2, lanes 7
and 8). The mutations link �-propeller blade 5 or the connec-
tion between blades 6 and 7 to the I-like domain, whereas the
ligand-binding interface locates on the opposite side of the
interface where blades 2–4 of the �-propeller domain contact
the I-like domain (Fig. 1). The mutations should therefore not
directly affect the ligand-binding site or disrupt conformational
changes in loops near the ligand-binding site. A panel of mAbs
directed against the head regions of �V�3 and �IIb�3 bound
identically to mutant and wild type receptors (data not shown),
suggesting that the mutant receptors adopt a native fold.

High affinity binding of �V�3 and �IIb�3 transfectants to
fluorescent, soluble ligands was measured with simultaneous
staining of surface-expressed �V�3 or �IIb�3 using two-color
flow cytometry (5). As described previously, wild type �IIb�3

bound soluble fibrinogen when activated by Mn2� and activat-
ing mAb PT25-2 but not in the absence of activation (Fig. 3A).
The �IIb-E324C/�3-G293C mutant could not bind soluble fibrin-
ogen in the resting state but showed full activity when treated
with Mn2� and PT25-2 (Fig. 3A). Thus, the ligand-binding
phenotype of �IIb�3 containing a disulfide-linked headpiece is
identical to wild type.

Similarly, the mutant �V�3 receptor was tested for activation-
dependent binding to soluble fibrinogen (Fig. 3B) and fibronec-
tin (Fig. 3C). As for �IIb�3, the ligand binding activities of wild
type and mutant �V�3 receptors were indistinguishable. Both
showed little or no basal ligand binding and strong binding of
both ligands upon activation by Mn2� and activating mAb AP5
(Fig. 3, B and C). These data show that disulfide bond forma-
tion between the �-propeller and I-like domains has no effect on
high affinity ligand binding by �3 integrins, strongly arguing
against the notion that head separation is required for conver-
sion to high affinity.

Introduced Disulfide Bond Blocks EDTA-induced Subunit
Dissociation—EDTA treatment at pH 8.4 at 37 °C is known to
induce dissociation of the integrin �IIb�3 into the �IIb- and
�3-subunits on the platelet surface (31–33). We confirmed that
�IIb�3 expressed on 293T transfectants is similarly susceptible
to the EDTA-induced subunit dissociation. Incubation of cells
expressing wild type �IIb�3 with 5 mM EDTA at pH 8.4 com-
pletely abolished binding of the �� complex-specific mAbs AP2
(34) and 10E5 (34) but had no effect on binding of the �3-
specific mAb AP3 (Fig. 4A). The complex-specific mAbs require
the presence of a complex between �IIb- and �3-subunits for
recognition, and loss of reactivity is thus an excellent indicator
of subunit dissociation. In contrast to the wild type receptor,
binding of the mAbs AP2 and 10E5 to the mutant �IIb-E324C/
�3-G293C receptor was unaffected by EDTA treatment (Fig.
4B) showing that the disulfide bond conferred resistance to
EDTA-induced subunit dissociation. Thus, maintenance of a
covalent connection between the �-propeller and I-like domains
is sufficient to protect the epitopes of the AP2 and 10E5 mAbs,
suggesting that the deleterious effect of EDTA on these
epitopes is a consequence of subunit separation, rather than a
direct stabilizing effect of divalent cations on residues within
the epitopes.

RGD Peptide Binding Does Not Induce Head Separa-
tion—We used the AP2 and 10E5 mAbs to determine whether
RGD-mimetic peptides, like EDTA, could induce head separa-
tion of cell surface �IIb�3. Incubation of wild type �IIb�3 293T
cell transfectants with 100 �M GRGDSP peptide resulted in full
exposure of cryptic epitopes called ligand-induced binding sites
(data not shown), as described previously (35, 36), suggesting

FIG. 2. Formation of intersubunit disulfide bonds in the head-
pieces of �V�3 and �IIb�3. Lysates were prepared from [35S]methi-
onine- and -cysteine-labeled 293T cells that had been transiently trans-
fected with wild type �V�3 (lanes 1 and 3), �V-M400C/�3-Q267C (lanes
2 and 4), wild type �IIb�3 (lanes 5 and 7), or �IIb-E324C/�3-G293C (lanes
6 and 8), immunoprecipitated with mouse mAb AP3 to human �3, and
subjected to SDS-7.5% PAGE under nonreducing (lanes 1, 2, 5, and 6) or
reducing (lanes 3, 4, 7, and 8) conditions followed by fluorography.
Positions of molecular size markers are shown on the left.

FIG. 3. Ligand binding by disulfide-linked receptors. 293T cells
expressing �IIb�3 (A) or �V�3 (B and C) integrins were incubated with
(filled bars) or without (open bars) 1 mM Mn2� and the activating mAbs
PT25-5 for �IIb�3 or AP5 for �V�3. Binding of FITC-fibrinogen (A and B)
or FITC-fibronectin (C) was determined and expressed as the percent-
age of mean fluorescence intensity relative to immunofluorescent stain-
ing with Cy3-labeled AP3 mAb. wt, wild type.
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that all of the �IIb�3 on the cell surface bound GRGDSP pep-
tide. However, preincubation with and the continued presence
of 100 �M RGD peptide had no effect on binding of AP2 and
10E5 mAbs to �IIb�3 (Fig. 4A). This result not only establishes
that RGD peptide and these mAbs bind to independent sites on
the �IIb�3 headpiece but also strongly suggests that the two
subunits stay associated in the headpiece when RGD peptide
is bound.

RGD-mimetic Compound Stabilizes Rather than Destabilizes
Integrin Headpiece Association—High affinity ligand-mimetic
compounds can stabilize integrin �� complexes and make them
resistant to SDS-induced dissociation during gel electrophore-
sis (37, 38). A wide variety of integrins can be stabilized, in-
cluding �IIb�3 (17, 39, 40). In these studies, the integrins were
either native or were recombinant integrins containing the
entire extracellular domain. In the bent integrin conformation,
there are substantial interactions between the �- and �-sub-
units in both the headpiece and tailpiece (4, 5). To clarify
whether ligand-mimetic peptide binding stabilizes the �� in-
terface present within the headpiece, we designed a truncated
�IIb�3 integrin fragment composed only of headpiece segments.
It contains the �IIb �-propeller and thigh domains and the �3

plexin-semaphorin-integrin (PSI), I-like, hybrid, and the first
integrin-epidermal growth factor-1 domains; the only ��� in-
terface present in this fragment is between the �-propeller and
I-like domains (Fig. 1). When the purified �IIb�3 headpiece
fragment was incubated with SDS sample buffer at room tem-
perature and subjected to SDS-PAGE, two distinct bands cor-
responding to the truncated �IIb- and �3-subunits were found
(Fig. 5, lane 1). By contrast, when the �IIb�3 headpiece frag-
ment was incubated with 10 �M of the RGD-mimetic compound
L738,167 prior to SDS-PAGE, a single band with higher mo-
lecular mass was found with no free �IIb or �3 fragments (Fig.
5, lane 2). Thus, the �IIb�3 headpiece becomes resistant to
dissociation by SDS after incubation with a ligand-mimetic
peptide. The ligand-mimetic compound strengthens association
between the �-propeller domain of �IIb and the I-like domain of
�3 probably by providing an additional interaction between
them, as seen in the crystal structure in which an RGD-mi-
metic peptide binds to �V through its Arg and �3 through its
Asp (6). Stabilization by the ligand-mimetic compound of ��

headpiece association is in strong contradiction to the notion
that ligand-mimetic peptides cause dissociation of the �- and
�-subunits in the headpiece.

DISCUSSION

Our study definitively establishes that head separation is
not required for activation of ligand binding by integrins, as
shown with both �IIb�3 and �V�3 by introduction of a covalent
linkage between the �-subunit �-propeller domain and the
�-subunit I-like domain. Despite the covalent linkage, binding
of �IIb�3 to fibrinogen, and �V�3 to fibrinogen and fibronectin,
was fully activable. We used the AP2 and 10E5 mAbs, which
bind to epitopes contained wholly within the �IIb�3 headpiece
and are specific for the �IIb�3 complex, to monitor separation
between �IIb and �3 in the headpiece within intact �IIb�3 on the
cell surface. EDTA dissociated the �IIb�3 headpiece as shown
by loss of both epitopes. However, the ligand-mimetic GRGDSP
peptide did not dissociate the headpiece, despite saturation
binding to �IIb�3 as shown by full exposure of ligand-induced
binding site epitopes. Finally, a high affinity RGD-mimetic
compound was found to stabilize association between �IIb and
�3 in a fragment containing only the headpiece. These results
completely contradict the idea that RGD-mimetics induce
headpiece separation. A model for I domain-containing inte-
grins, in which separation between the �-subunit �-propeller
and the �-subunit I-like domain allows the �-subunit I domain
to bind to the �-propeller domain in place of the I-like domain
(15), also seems highly unlikely in view of our results, because
integrins that contain and lack I domains are activated by
similar mechanisms (3).

By contrast, the results are completely consistent with an
alternative model of integrin activation, in which the integrin
headpiece stays associated and ligand binding affinity is linked
to the equilibrium between bent and extended integrin confor-
mations, and between two headpiece conformations that differ
in the angle between the I-like and hybrid domains (5). In
contrast to the headpiece separation model, the bent-extended
model has received experimental support. Disulfide bonds that
stabilize the bent conformation inhibit integrin activation (5),
and an introduced N-glycosylation site designed to wedge open
the angle between the I-like and hybrid domains activates
ligand binding (36).

The crystal structure of �V�3 bound to an RGD ligand-mi-
metic peptide was obtained by soaking the peptide into a crys-
tal containing the bent conformer of �V�3 (6). Some movement
was seen at the �-propeller interface with the I-like domain
upon ligand binding, but its magnitude was small and compat-
ible with the disulfide bonds we have introduced. Thus, the
distances between C� atoms before and after ligand binding,
respectively, are 6.7 and 6.8 Å for �V-M400/�3-Q267, and 5.8
and 5.8 Å for �V-E311/�3-G293. In the absence of restraining
crystal lattice contacts, ligand-mimetic peptide binding induces

FIG. 4. Effect of EDTA treatment and RGD peptide on the
binding of complex-specific �IIb�3 mAbs. Transiently transfected
293T cells expressing wild type �IIb�3 (A) or mutant �IIbE324C/
�3G293C (B) were stained with the indicated mAbs in the presence of 1
mM Ca2�/Mg2� (open bars), 5 mM EDTA (filled bars), or 1 mM Ca2�/
Mg2� plus 100 �M GRGDSP peptide (shaded bars, wild type only) as
described under “Experimental Procedures.” Binding is expressed as
the percentage of positive cells after subtraction of background staining
by �63 IgG control.

FIG. 5. Ligand-induced stabilization of intersubunit associa-
tion in the headpiece. The �IIb�3 headpiece fragment comprising �IIb
residues 1–621 and �3 residues 1–472 was incubated without (lane 1) or
with 10 �M L738,167 (lane 2) and subjected to SDS 4–20% gradient
PAGE and Coomassie Blue staining. Positions of molecular size mark-
ers are shown on the left.
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adoption of the high affinity, extended conformation of �V�3

and a change in angle between the I-like and hybrid domains
(5). Our disulfide bond-linked mutants are fully competent for
high affinity ligand binding. Therefore, any further change in
orientation of the �-propeller domain with respect to the I-like
domain between the ligand-bound bent and extended confor-
mations must be relatively small.

Apart from complete head separation, the possibility has
been raised of integrin activation by a marked tilt of the I-like
domain so that it separates from the �-propeller domain at the
ligand binding interface but not on the opposite side of the
interface, near where we have introduced disulfide bridges (2,
15). We note that the �IIb-E324C/�3-G293C mutation involves
residues that are buried in the �-propeller I-like domain inter-
face and that the surrounding region is highly conserved in �V

and �IIb. Therefore, pivoting around the introduced disulfide
bond to open the ligand-binding site seems unlikely, because on
the side of the pivot opposite from the ligand-binding site
residues are already closely packed. Thus, �3 residue Glu-297
would clash with �V residue Phe-337, and �3 residues Leu-324
and Pro-326 would clash with �V residues Lys-308 and Leu-
309; all of these �V residues are highly conserved in �IIb. Our
results therefore rule out a significant tilting motion between
the �-propeller and I-like domains that would open up the
ligand binding interface, as well as complete separation of
these domains. This conclusion is in accord with high resolu-
tion EM projection averages that show no gross change in
orientation between the �-propeller and I-like domains upon
ligand binding (5). Indeed, the only inter-domain movement
observed within the headpiece upon ligand binding is between
the I-like and hybrid domains (5). Partial head separation is
also inconsistent with the crystal structure of RGD peptide
bound to �V�3, because the Arg and Asp side chains of RGD are
already extended in opposite directions (Fig. 1) (6), and sepa-
ration at this interface would abolish one or the other of the
highly specific interactions that these side chains make with
the �V- and �3-subunits, respectively.

We have suggested that swinging of the hybrid domain pulls
down the C-terminal helix of the I-like domain and as a conse-
quence activates the metal ion-dependent adhesion site analo-
gously to I domain activation (3, 36). Since physiological li-
gands use many residues other than the potential metal ion-
dependent adhesion site-coordinating residues to interact with
integrins, it is natural to expect that conversion to the high
affinity conformation involves rearrangement of residues of the
�-� interface outside of the metal ion-dependent adhesion site.
In fact, there are activation-reporting mAbs that map to this
region (41–43). These rearrangements may involve loop remod-
eling and some reorientation between the �-propeller and I-like
domains, but in a more subtle degree than proposed by head
separation/tilting models. Precise determination of the subtle
conformational changes responsible for affinity regulation of
integrins awaits further study using atomic resolution
analysis.
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