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Abstract

Integrin a5B1 mediates cell adhesion to the extracellular matrix (ECM) by binding
fibronectin (Fn). Selectivity for Fn by a5B1 is achieved through recognition of an RGD motif in
the 10th type-111 Fn domain (Fn10) and the synergy site in the 9th type-I1l Fn domain (Fn9).
However, details of the interaction dynamics are unknown. Here, we compared synergy-site and
Fn-truncation mutations for their a5B1-binding affinities and stabilities. We also interrogated
binding of the a5p1 ectodomain headpiece fragment to Fn using hydrogen deuterium exchange
mass spectrometry (HDX MS) to probe binding sites and sites of integrin conformational change.
Our results suggest the synergistic effect of Fn9 requires both specific residues and a folded
domain. We found some residues considered important for synergy are required for stability.
Additionally, we show decreases in fibronectin HDX are localized to a synergy peptide
containing contacting residues in two f-strands, an intervening loop in Fn9, and the RGD-
containing loop in Fn10, indicative of binding sites. We also identified binding sites in the a5-
subunit B-propeller domain for the Fn9 synergy site and in the B1-subunit I domain for Fnl10
based on decreases in a5p1 HDX. Interestingly, the dominant effect of Fn binding was an
increase in a5PB1 deuterium exchange distributed over multiple sites that undergo changes in
conformation or solvent accessibility and appear to be sites where energy is stored in the higher-
energy, open-integrin conformation. Together, our results highlight regions important for a531
binding to Fn and dynamics associated with this interaction.
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Introduction

Integrins are ap-heterodimeric cell-surface receptors that sense cellular environments and
mediate cell adhesion and migration. Their a and B subunits are comprised of large extracellular
domains (ectodomains) that link to single-pass transmembrane domains and cytoplasmic tails.
The two subunits associate noncovalently to form a ligand-binding head distal to the cell
membrane (Fig. 1A). By binding glycoprotein ligands in the extracellular matrix (ECM) or on
the surface of other cells and connecting to the actin cytoskeleton inside the cell, integrins
transmit signals, including tensile force, between the extracellular and intracellular
environments. The prototypic a5B1 integrin mediates cell adhesion to fibronectin (Fn) in the
ECM,; it also directs Fn fibril formation and assembly into the ECM (1,2). The interaction
between a5B1 and Fn is important for vertebrate development(3) including vascular development
and angiogenesis (4) and cancer progression (5).

Like most integrins, activation of a5SB1 for high-affinity ligand binding is accompanied
by large conformational changes in its ectodomain. a5B1 equilibrates between three overall
conformations, bent-closed (BC), extended-closed (EC) and extended-open (EO) (Figure 1AB)
(6-8). In the resting state on the cell surface, a5p1 is predominantly (>99%) in the BC
conformation where the ectodomain bends at the knees and the lower legs and transmembrane
domains in each subunit associate with one another. Extension at the knees separates the
headpiece from the lower legs in each subunit (6,8-12). Headpiece opening reshapes the pI
domain around the ligand-binding site, which is linked to swing-out of the B-subunit hybrid
domain away from the a.5-subunit thigh domain (6,12-15) (Figure 1C,D). Both BC and EC
conformations are low-affinity; transition to the EO conformation increases a5p1 affinity for
ligand by ~5000-fold (8). The divalent ion Mn?* can activate high-affinity ligand binding in vitro
by facilitating these conformational changes as well as increasing the intrinsic affinity of each
conformation for ligand (16). In the presence of Mn?*, the a5p1 headpiece was closed when
unliganded and became open when an RGD peptide or Fn was bound (Fig. 1A-D) (6,12,17).

a5pB1 belongs to a subfamily of integrins that recognize an Arg-Gly-Asp (RGD) sequence
in their ligands. While many integrin ligands contain the RGD motif, a5B1 binding to Fn is
unusual in requiring both the RGD sequence located in the 10th type-I1l Fn domain (Fn10) and
the synergy site located in the adjacent Fn9 domain (18-22). A recent cryo-EM structure of the
a5B1-Fn complex clarified this dual recognition mode by showing that the RGD-bearing loop in
Fn10 is inserted in a cleft between the a5-subunit B-propeller domain and the 1-subunit BI
domain while the synergy site in Fn9 contacts the a5-subunit 3-propeller domain (Figure 1E), as
earlier predicted (12). However, much more remains to be learned about this important
interaction.

Here, we have complemented static pictures from crystal and cryo-EM structures that
reveal how RGD peptides and Fn bind to integrin a5p1 with studies of how their interaction
affects the backbone dynamics not only of regions that interact but also regions that undergo
conformational changes. We explore the a5p1 headpiece, Fn and their interactions by using
hydrogen-deuterium exchange (HDX) coupled with mass spectrometry. The integrin headpiece
fragment (Fig. 1A right) contains the ligand binding site, has the same intrinsic affinity for Fn as
the complete ectodomain and intact integrin on the cell surface, and undergoes the same closed
to open conformational change as the complete ectodomain and intact integrin on the cell surface
(8,12-14,17). HDX measures exchange of protein backbone amide hydrogens with deuterium.
The exchange is sensitive to hydrogen bonding, solvent accessibility, and backbone movement,
and thus reports local backbone conformation and dynamics (23). HDX measurements provide
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unique insight into the dynamics of proteins and protein—protein interactions and are
complementary to structural methods such as crystallography and EM that provide snapshots of
low energy positions of proteins within their energy landscapes. To understand how motions in
fibronectin integrin-binding fragments (ligand) and fibronectin-binding integrin headpiece
fragments (receptor) change upon complex formation, we have studied here HDX in the ligand,
the receptor, and their complex. To complement this work, we have also studied how ligand-
binding affinities vary in mutants and Fn domain truncations.

Results

Dynamics, stability, and affinity for a541 of Fn fragments and mutants
We describe, in turn, deuterium uptake dynamics in fibronectin fragments, then in the integrin
a5pB1 headpiece fragment, and then in integrin a5B1 headpiece complexes with fibronectin
fragments and RGD peptide (Supplementary Table S1). We first measured HDX for Fn9-10 (30
peptides constituting 97.3% sequence coverage) and Fn7-10 (32 peptides constituting 69.8%
sequence coverage) in the absence of a5B1 integrin. The individual Fn domains showed distinct
deuterium uptake profiles (Figure 2A-D, Supplementary Figure S1). Fn7 and Fn10 incorporated
the highest amount of deuterium; in most regions more than 50—60% of available amide
hydrogen atoms were exchanged with deuterium after 4 hr. Importantly, the integrin-binding
RGD loop in Fn10 had high exchange (Figure 2E), showing that it is highly dynamic in
agreement with NMR studies on Fn10 and Fn9-10 fragments (24,25). Fn9 incorporated less
deuterium compared to Fn10 in the Fn9-10 fragment, even though as isolated domains Fn9 was
less stable than Fn10 by differential scanning calorimetry and chemical denaturation studies
(26,27). Most Fn9 peptides showed less than 50% exchange after 4 hr. The synergy site in Fn9
was notably one of the least exchanging regions and exchanged only ~35% after 4 hr (Figure 2A-
D and F).

The Fn9 domain was more dynamic in Fn9-10 than in Fn7-10. In particular, the Fn9 B-C
loop, which contacts the Fn8 domain, incorporated more deuterium in Fn9-10 than in Fn7-10,
particularly at early time points (Figure 2G). Correlating with this difference in HDX, Fn8
stabilized Fn9 and Fn10 in thermal unfolding experiments measured by intrinsic tryptophan
fluorescence (Figure 3A).

The Fn7, Fn8, Fn9, and Fn10 domains each contain a single Trp residue that is buried in
the hydrophobic core. In general, tryptophan fluorescent emission shifts from ~330 nm to ~350
nm as a result of increased solvent exposure during unfolding. Instead of stepwise transitions for
each individual Fn domain, a single transition was observed for Fn9-10, Fn8-10 and Fn7-10 that
suggested cooperative thermal unfolding for the less stable Fn8 and Fn9 domains (26,27). The
Tm’s of Fn8-10 and Fn7-10 (Figure 3A) were comparable and were 8 °C higher than that of
Fn9-10, showing that Fn9 and Fn10 are stabilized by Fn8, and that Fn7 did not provide further
stabilization. In agreement with previous reports on isolated Fn domains, the Tm of FN10 was
high (26,27); however, its “folded” and “unfolded” states showed substantially higher F350/F330
fluorescence ratios than the corresponding states of the tandem domains in Fn9-10, Fn8-10 and
Fn7-10 (Figure 3B). These differences suggest that the folded and unfolded states of Fn10 may
each be more disordered than those in the fragments with tandem domains.

We next compared the importance of Fn domains 8, 9, and 10 and the synergy site for
binding in Ca*/Mg?* to a WT and mutant a5f1 integrin. The mutation is in a residue that
interacts with the synergy site, a5 D154A (a5P™*B1) (Figure 1E). Affinity of the a5Sp1
ectodomain for Fn was measured by competition with a fluorescently labeled fibronectin-
mimetic RGD peptide cyclized with a disulfide bond, ACRGDGWCG (cRGD) (28,29), in
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fluorescence anisotropy. The affinities of WT a5B1 for Fn9-10 and Fn8-10 were within
experimental error of one another; however, affinities of both Fn9-10 and Fn8-10 were
substantially higher, by 20-30-fold, than that of Fn10 (Figure 3CD and Supplementary Fig.2),
consistent with the synergy site in Fn9 augmenting binding affinity for a5p1 (18-22). Thus, the
addition of Fn9 to Fn10 raised affinity for a5p1 by ~25-fold over Fn10 alone, placing a
quantitative value on the affinity enhancement by Fn9 and its synergy site. Furthermore, HDX
showed that Fn9 was more stable in Fn7-10 than in Fn9-10 and Tm values showed that Fn7-10
and Fn8-10 were comparably stable and that Fn9-10 was less stable. However, because Fn8-10
and Fn9-10 have similar binding affinities for a581, these results suggest that the stability of
Fn9-10 is sufficient for maximal binding affinity for a5p1.

To better understand the role of the synergy site, a single-residue mutation of Arg-1379
to Ala (Fn®) and a triple mutation of residues Arg-1374, Pro-1376 and Arg-1379 to Ala (FnR"R)
were created in Fn8-10 and Fn9-10. Previously, structures of Fn7—10 and the a5B1 headpiece
bound to an RGD peptide, together with docking and mutation of acidic residues in the a5 p-
propeller domain and Arg-1379 in the Fn9 domain, suggested that Asp-154 in the a5 B-propeller
domain bound to Arg-1379 in the Fn9 domain (13) as later confirmed by cryo-EM (12) (Figure
1E). We found similar 3-fold decreases in affinity of WT a5p1 for FnR9-10 and Fn?8-10 and of
WT Fn9-10 and Fn8-10 for a5P™*AB1 (Figure 3D and Supplementary Figure S2). Furthermore,
there was little or no further decrease in affinity of a5P**AB1 for the Fn® mutants of Fn9-10 and
Fn8-10, supporting the interaction of a5 Asp-154 with Fn Arg-1379. The more drastic FnR™R
triple mutant lowered affinity by 15 to 17-fold of Fn9-10 and Fn8—10 for WT a5B1. The
decrease in affinity of the Fn8-10RPR and Fn9-10RPR mutants was similar for a5p1 and a5P¥*B1,
as expected from the interaction of a5 Asp-154 with Fn Arg-1379 (13). However, the similarity
in affinity of a5p1 for FNRPRFN9-10, FnRPR8-10, and Fn10 (Figure 3D) was unexpected. The
a5B1 / Fn9-10 complex structure shows that Arg-1374 has no interaction with a5p1 and that Pro-
1376 lacks a van der Waals interaction with a531 and buries only slightly less solvent accessible
surface area (15 A?) than the Ala-1376 mutant (assuming the mutation does not perturb backbone
conformation) (12). Furthermore, interactions between Fn and a5B1 extend beyond the synergy
site to include, for example, a salt bridge between a5 Lys-125 and Fn Asp-1373 (Fig. 1E). These
results suggest that the FnR"R mutation may alter the structure of Fn9 and largely disable its
interaction with a5p1.

Did the FnRPR or FnR mutations in Fn9 directly alter interactions with aSp1, or cause
unfolding or a change in structure of Fn9 so it no longer interacted? To examine unfolding, we
measured the stabilities of the FnR"R and Fn® mutants in thermal and urea denaturation (Figure
3A,B). The Tm’s of Fn9-10 and FnR9-10 were similar, while the Tm of FnR"R9—10 was 4 °C
lower. Unfolding in urea showed that the folding free energy of Fn?9—-10 was increased by 0.4
kcal/mol; thus, while removal of the sidechain of Arg-1379 decreases interaction with a5p1,
removal stabilizes Fn9-10 folding. In contrast, the folding free energy of of FnRPR9—10 was
decreased by 0.5 kcal/mol relative to WT and by 0.9 kcal per mole relative to FnR9-10. These
differences are consistent with a change in structure of Fn9 in the FnRPR mutation.

In HDX experiments on Fn complexes with a5p1, it is important to know the populations
of the conformational states of bound and unbound a5p1 headpiece and to calculate the percent
of the a5B1 headpiece bound to Fn. We used the a5B1 headpiece to simplify peptide analysis in
HDX; HDX was performed initially with the ectodomain but there were difficulties in reduction
and digestion of the disulfide-rich lower leg of B1. The headpiece contains the ligand binding
domains and lacks the lower legs of the ectodomain (Figure 1A). In Mg?*/Ca?", the a5p1
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headpiece is 99.97% in the closed conformation and 0.03% in the open conformation based on
previous accurate measurements of its conformational equilibria (8). To maximize integrin
binding to fibronectin, all HDX measurements on a5p1 bound to fibronectin and cRGD were
done in the presence of Mn?* instead of Mg?*/Ca?*, which increases intrinsic affinity for ligand
~30-fold and also increases population of the high-affinity, open conformation (16). To
determine the completeness of binding in Mn 2*, we measured the affinities of cRGD and Fn7—
10 and Fn9-10 for the a5B1 headpiece in Mn?*, The results with Fn7—10 and Fn9-10 were
similar, and showed affinities in Mn?* of ~0.5 nM for the basal ensemble and ~30 nM for the
closed state (Supplementary Fig. S3). cRGD binds to the basal ensemble of the a531 headpiece
in Mn2* with an affinity of 3.2+0.3 nM. In Mn?*, the intrinsic affinities of cRGD for the closed
states of the a5B1 headpiece of 44+3 nM and the ectodomain of 465 nM are similar (16), in
agreement with the previously established concept that integrin affinities are intrinsic to
conformational states and independent of whether the integrin is on the cell surface or a
particular fragment (8,30). Using this concept, data from Supplementary Fig. S3, other
measurements (16), and the equations described in Methods, we calculated the extent of binding
and the conformational composition of each of the HDX samples described below (Tables S2
and S3). The results showed that the ligand binding site on a581 was more than 99.66%
occupied with all three ligands and that a5p1 was 93% open and 7% closed when bound to
cRGD and 97-98% open and 1-2% closed when bound to Fn9-10 and Fn7-10.

To map the effects on Fn of binding to a5p1, we measured deuterium incorporation for
Fn9-10 and Fn7-10 fragments in complex with a5B1 and compared those values to deuterium
incorporation of Fn9-10 and Fn7-10 alone, under identical HDX MS conditions. Most Fn
peptides did not show a meaningful difference in deuterium uptake (JAD| > 0.7 Da) between
a5B1-bound Fn and free Fn (Figure 4 and Supplementary Figure S4). However, a5B1 protected
RGD loop and synergy site peptides. The RGD-bearing loop (residues 1488-1509) in Fn9-10
and Fn7—10 incorporated less deuterium across all time points when bound to a581 (Figure 4C).
The synergy site peptide, which was covered in Fn9-10 but not in sparsely covered Fn7-10
(Figure 4A), also incorporated less deuterium at all time points in presence of a5p1 (Figure 4D).

Dynamics of unliganded and liganded a581 integrin.

HDX MS was performed on the unliganded a5p1headpiece, and the headpiece in
complex with cRGD peptide, Fn9-10, or Fn7-10 (Supplementary Figure S5-8). For the
unliganded a5B1headpiece, deuterium uptake was below 50% after 4 hr in most regions (Figures
5A and 6). In particular, the core of the B-propeller domain showed <30% exchange even after 4
h, consistent with the fact that the B-strands that form the propeller blades are extensively
hydrogen-bonded. Among the four large domains in the headpiece, the thigh domain showed
more exchange overall than the other three domains (Figure 5). Within the domains, a few
isolated regions showed more extensive exchange (>50% at 4 h). The W-A loop in the hybrid
domain exchanged the most (>80% at 4 h) (Figures 5 & 6H), consistent with the disordered loop
observed in some crystal structures (14). In the BI domain, the ligand-proximal a1-helix, the a1’
helix, and the specificity-determining loop 2 (SDL2) exchanged extensively (>50% at 4 h)
(Figures 5 & 61-K).

To map the effects of ligand binding on a5B1, we measured a5f1 deuterium uptake in the
same Fn9-10 and Fn7-10 complexes with a5B1 that were described in the previous section.
Additionally, the a5B1 headpiece was complexed with cRGD. Comparing HDX of 51 in the
ligand-bound form to the unbound form revealed deuterium uptake differences (AD = Duound o5p1
— Drree a5p1) both at and distal to the ligand-binding site. Changes in deuteration greater than 0.7
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Da (increases, pink-dark red) or less than 0.7 Da (decreases, cyan-blue) in peptides are shown on
the structures in Figure 7. Altered HDX reflects both the effects on specific regions of a5Sp1 that
bind to ligand and the effects of conformational change from the closed to the open
conformation. Under the conditions of our HDX experiments in the presence of Mn?*, the a5p1
headpiece changed from 0.4+0.2% open in the absence of ligand to 93-98% open in the presence
of the three ligands (Supplementary Table S3). All HDX mass spectra displayed a single
binomial isotope distribution, indicative of a single population of molecules in solution, that
increases in mass with longer deuteration time (EX2 kinetics (31)). No peptides showed a
bimodal distribution where the lower mass distribution reflects a more protected less deuterated
species and the higher mass distribution a less protected more deuterated species, a hallmark of
simultaneously existing populations in distinct conformational states (EX1 kinetics (31)). These
findings would be consistent with both the calculated predominance of the open integrin state in
presence of ligand and the closed state in absence of ligand, as well as interconversion between
closed and open states on a timescale more rapid than our HDX experiments.

Interconversion between the open and closed conformations of integrin a581 is regulated
by alterations in the BI domain and its interface with the hybrid domain. The three regions of the
integrin BI domain that move the most in allostery are the al-al’, 02, and a7 helices (32)
(Figures 61-K,M,P and 7A,B,D). All three ligands uniformly increased HDX of the a2 and a7
helices. In contrast, effects of the ligands differed on the al-al’ helix. A large number of
peptides covered the combined al-al1” helix, including 131-160, which showed an increase in
HDX by cRGD and not Fn9-10 or Fn7-10 (Figure 61 and Supplementary Figure S9). Greater
insight was provided by peptides 134-149 (al-helix) and 150-160 (a1’ helix) (Figures 6J and
6K, respectively). cRGD enhanced exchange in a1, while Fn9-10 and Fn7-10 only slightly
increased a1l exchange. In contrast, all three ligands similarly and slightly decreased exchange in
al’. In the open conformation of the Bl domain, the B-MIDAS motif that coordinates the MIDAS
and ADMIDAS metal ions, which largely is within the a1-helix, moves and forms enhanced
interactions with the MIDAS Mg?* ion, the ADMIDAS Ca?* ion, and the Asp of the RGD motif
present in all three ligands (15,32).

The increase in HDX of the al-helix is the opposite of that expected from stabilization
and burial by ligand binding. Instead, the increase in exchange in the al, a2, and o7 helices
correlates with the lower stability of the a5B1 headpiece in the open conformation—by 4.7
kcal/mol compared to the closed conformation (8). The lesser increase in exchange of the al-
helix by the two Fn fragments than cRGD may be accounted by their larger burial of the al-
helix; for example, Tyr-1446 of the Fn10 domain hydrogen bonds to BI residue Asp-137, which
is part of the a1-helix and coordinates the ADMIDAS Ca?* ion (Figure 1E).

Other regions of altered HDX in the f1 subunit were in BI and hybrid domain interfaces.
The a3-p4 and a5-B5 loops in the BI domain and F-G loop in the hybrid domain in the BI-hybrid
domain interface all showed increased HDX in the presence of ligand (Figures 6N,O,R &
7A,B,D). The C-D loop in the hybrid domain is in a contact with a long B-ribbon in the B-
propeller domain in the closed conformation that is broken in the open conformation, correlating
with increased HDX in presence of the three ligands (Figure 1C,D, 6Q, and 7A,B,D). SDL2
shows an increase in HDX at early time points in liganded a5p1 (Fig. 6L), correlating with its
movement together with the contacting Tyr-133 sidechain in the a1-helix, which contacts Pro-
1497 in the Fn10 RGD loop.

Ligand binding-dependent HDX signatures were fewer in a5 than in the B1-subunit but
provided important insights. The W2B4-W3p1 loop (peptide 148-168) in a5, which contains
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Asp-154 that binds to Fn9 synergy site residue Arg-1379, showed decreased HDX with both
Fn9-10 and Fn7-10 at later time points, confirming the importance of the synergy site (Figure
6A and 7A-C). Interestingly, cRGD decreased exchange somewhat more in the same peptide.
CRGD gains high affinity for a5p1 from the Trp residue in position 7 of its sequence,
ACRGDGWCG, which was predicted to interact with a5 Trp-157 by mutagenesis (28,29).
Indeed, a crystal structure shows a T-shaped interaction between Trp-7 of cRGD and a5 Trp-157
with formation of two m—x bonds (14), explaining the decrease in deuteration upon cRGD
binding. In contrast, peptides containing Asp-227 in the a5 B-propeller W334-W41 loop, which
forms bidentate hydrogen bonds to the Arg sidechain of the RGD moiety of the three ligands, did
not show changes in HDX (Figure 6C). This may be because Asp-227 lies in a cleft (Figure 1E)
and was already quite stable owing to a pre-existing hydrogen bond network that includes its
sidechain and the presence of at least one mainchain-mainchain hydrogen bond in Asp-227 and
its flanking residues from positions 223 to 231.

Two other regions of the a5 -propeller showed lower exchange upon ligand binding.
The B-ribbon in the B-propeller domain, which contacts the C-D loop in the hybrid domain in the
closed but not open conformation, as already discussed above, showed increased deuterium
uptake upon ligand-binding at early time points (10 s and 1 m) (Figures 6D & 7ABC).
Interestingly, increased exchange at the 10 s and 1 m and not later time points was seen for both
the B-ribbon and C-D loop (Figure 6D,Q), suggesting that whereas ligand-binding resulted in
headpiece opening and broke cognate interactions between these regions at early timepoints,
their interface was also susceptible to breathing motions in the closed conformation that resulted
in exchange at later timepoints. A long peptide in the thigh domain (549-585) showed HDX that
was increased by ligand binding by ~2—-3 Da at all time points (Figures 6F & 7ABC). Lack of
differences in overlapping peptides 546555 and 556-569 (Figure 6E&G & Supplementary
Figure S9B) suggested that the increase in deuteration occurred in residues 570-585 in the thigh
domain F-G loop. The F-G loop has an extensive interface with the B-propeller domain (Figure
7AB). Studies of integrin ectodomains with multiple examples in crystal lattices have shown
differences of up to 20° in thigh/B-propeller domain orientation (33). The thigh domain is close
to the PSI domain in the closed conformation; loss of contact with PSI in the open conformation
may alter thigh/B-propeller domain orientation and is one possible explanation for increased
exchange of the thigh F-G loop in the open conformation. Another possibility is transmission of
energy from the ligand binding-interface through the relatively rigid -propeller domain to its
interface with the thigh domain.

Discussion

The seminal observation by Ruoslahti and colleagues that the RGD motif in fibronectin
was sufficient to bind integrin a5B1, and was also recognized by other integrins in other
extracellular ligands, raised the question of how specificity was obtained (34). Yamada and
colleagues answered this question for a5B1 by demonstrating recognition of a distinct,
synergistic site in Fn9 that neighbored the Fn10 domain bearing RGD (18,19). Structures of
a5B1 complexes by the groups of Takagi and Mizuno (12,13) have clearly shown how the Fn9
domain is bound, but questions remain. For example, it has been suggested that synergy site
mutations act indirectly by decreasing Fn9 stability, and a stabilizing L1408P mutation on the
non-bound face of Fn9 was shown to increase a5p1 affinity for Fn9-10 (22).

We have determined equilibrium binding affinities for synergy site mutations and Fn
fragments of different lengths and their stabilities using thermal and urea denaturation. Although
our results on the Fn9 Arg-1379 interaction with a5 Asp-154 are confirmatory, we believe that
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they are the first true affinity measurements. We find only a ~3-fold reduction in affinity with the
Fn9 R1379A and a5 D154A mutations alone or their combination. In contrast, competition of
cell adhesion by R1379A Fn9-10 fragments showed a 70-100-fold reduction in potency (19,21).
Previous measurements by ELISA used washing and were thus inherently not in equilibrium;
previous SPR measurements were not fit globally to demonstrate 1:1 Langmuir binding;
furthermore, both methods use solid phases which introduce biases not found in solution binding
assays. One study reported apparent affinities (ECso values) in ELISA and SPR that differed
internally from one another by 10-fold for some mutants and 5-fold for another, nonetheless, the
relative differences between WT and R1379A Fn9-10 were close to the three-fold difference
found here (22). The three residues in Fn found most important for synergy were combined here
in the triple mutant R1374A/P1376A/R1379A (FnRPR) (19,21). The FnR"R mutant lowered
affinity by 15-17 fold, almost as much as seen with the 20-30-fold decrease in affinity with
omission of the Fn9 domain. The same FnR"R mutant studied by the Takagi group was found to
decrease ECso by ~30-fold, in good agreement with our results (13).

Subsequent structure determination showed that Arg-1374 points away from a5 and that
Pro-1376 is on the periphery of the contact and buries only a small amount of solvent-accessible
surface area (12), supporting the idea that the R1374A and P1376A mutations might lower Fn9
stability or alter its structure and thus indirectly affect affinity. Our stability measurements and
the similar affinities for a5p1 of FnR"R9—-10 and Fn10 support this idea. We found single thermal
and urea denaturation transitions for Fn7-10, Fn8-10, Fn9-10, and Fn10 fragments. Fn7 and
Fn10 are very stable and the single transitions in other fragments likely reflect unfolding of the
less stable Fn8 and Fn9 domains (22,26). The FnR 9—-10 mutant was more stable than WT in urea,
as also found for FnR9—10 in guanidine (22). In contrast, the Fn*PR mutant was substantially less
stable than WT, showing that only the R1374A and/or P1376A mutations are detrimental to
stability. These results suggest that the predominant effect of the R1374A and P1376A mutations
is to disrupt the structure of Fn9 so that it binds o581 less well.

In conclusion, it appears that previous attempts to define a synergy site within Fn9
identified both a specific contact of Fn9 Arg-1379 with a5 Asp-154 that decreased affinity by 3-
fold, and other residues that decreased affinity substantially more by altering the folding or
structure of Fn9. Although one group suggested that synergistic activity depended on structural
stability, it is interesting that they found one exception to this trend: R1379A (Figure 5 in (22)).
It was noble to attempt to identify a synergy site motif in Fn9 that could be distilled down to a
short amino acid sequence like RGD in Fn10 (18,19,21); however, our data and recent structures
(12,13) suggest that the folded structure of Fn9 and residues that are distant in sequence but close
in structure are required for proper recognition by a5B1. Thus, it appears more correct to think of
Fn9 as being a synergistic domain rather than to think of Fn9 as containing a synergistic site that
can be reduced to a sequence motif analogous to RGD.

Our HDX experiments showed integrin a5B1-binding signatures in Fn7—-10 and Fn9-10
only of peptides 1373-1384 in Fn9 and 1488-1509 in Fn10. It is important to point out that
peptide 1373—-1384 contains multiple residues within van der Waals distance of a581 including
the sidechains Asp-1373, Arg-1379, Ser-1381, and the backbone of Ile-1382, and that these
residues are in two B-strands and the loop between them and thus require an intact Fn9 domain
for their proper 3-dimensional organization into a binding surface (12). Peptide 1488-1509
contains only three residues in van der Waals contact with a5B1, Arg-1493, Asp-1495, and Pro-
1497; these residues are at the tip of the long RGD loop and therefore have little dependence on
the remainder of the Fn10 domain for their 3-dimensional organization. These differences
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correlate with the domain-like and sequence motif-like characters of a5p1 binding by Fn
domains 9 and 10, respectively.

In a5B1, we saw an HDX signature for binding of Asp-154 to Arg-1379 in Fn9 in the
decreased exchange of a5 peptide 148-168 (W2p4-W3[1 loop). We did not see a signature for
binding of Arg-1493 in the RGD motif of Fn10 to Asp-227 in the a5 B-propeller domain. As
discussed in Results, the lack of decreased HDX may be because the Asp-227 sidechain and the
mainchain of residues 223 to 231 in the polypeptide chain are secured by hydrogen bonds, and
thus mainchain exchange may already be low prior to Fn binding.

An unexpected increase of large magnitude in HDX was seen in the thigh domain F-G
loop, which is in intimate contact with the a5 B-propeller domain. The thigh domain may act as a
chaperone for folding of integrin B-propellers, because no integrin has ever been successfully
biosynthesized and expressed as a recombinant aff heterodimer containing only the -propeller
domain in the a-subunit, despite the ability to proteolytically remove the thigh domain after
biosynthesis with full retention of ligand-binding activity (32). The a5 B-propeller domain is
knitted together by association of residues 1-12 containing B-propeller B-strand 4 with B-strands
1-3 formed by residues 410-452 into 3-sheet (blade) 7 of the 7-bladed p-propeller domain (35).
The thigh F-G loop lines the interface with $-sheet 7 of the B-propeller domain, contacts both the
N-terminal segment prior to B-strand 1, the connection to the thigh domain through the segment
after B-strand 4, and the loop between B-strands 2 and 3. Thus the thigh F-G loop may chaperone
the B-propeller by helping to splice together its N and C-terminal portions. Movement of the PSI
domain in the upper B-leg away from close proximity to the thigh domain and its impact on
motions at the thigh—B-propeller interface at the F-G loop is one possible explanation for its
increased HDX as mentioned in the Results section. Another possible explanation would be
transmission of motion through the B-propeller domain from its ligand binding interface with the
BI domain to the thigh F-G loop; specific pathways for transmission of allostery and motion
through domains have been observed in model systems (36).

Binding of Fn7-10, Fn9-10, and cRGD peptide to a5pB1 strikingly altered HDX in all f1
subunit regions with conformational change upon opening (12,15,32), including the BI domain
al and a1’ helices. In opening, these helices move toward the ligand binding site and the al helix
contacts ligand, including forming mainchain hydrogen bonds to the sidechain of the Asp of
RGD. Upon opening, the a1 and a1’ helices, which are separated by a bend in the closed
conformation, fuse to form a single straight helix. Binding of cRGD increased exchange in the
a5pB1 BI domain a1 helix substantially more than Fn7-10 and Fn9-10, consistent with burial of
al helix residues D137-E140 by non-RGD portions of Fn including formation of a hydrogen
bond from Fn Tyr-1446 to the Asp-137 sidechain; the other carboxyl oxygen of the Asp-137
sidechain coordinates the ADMIDAS Ca?* ion. It appeared that conformational change upon
binding to RGD in all ligands substantially increased exchange in the al-helix and that this was
partially offset by stabilizing interactions formed by non-RGD portions of the Fn10 domain in
Fn7-10 and Fn9-10 that lowered exchange. On the other hand, exchange in the al’ portion of the
merged al/al’-helix in the BI domain was decreased by binding of all ligands, perhaps by helix
merger.

All other regions of the a5p1 headpiece that alter conformation upon headpiece opening
showed ligand-binding induced increases in HDX. The a2 and a7-helices in the BI domain lie on
opposite sides of the a1-helix and show piston-like movements in allostery. Each showed
dramatic increases in deuteration after ligand binding, which stabilized almost complete
conversion of ligand-bound a5B1 to the open conformation as shown by energy landscape
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measurements and calculations. Two loops each in the I domain and in the hybrid domain
showed more deuteration after ligand binding. Three of these loops were at the interface between
the BI and hybrid domains, which undergoes a large change in inter-domain orientation upon
opening. Regions of the B-propeller and hybrid domains that touch in the closed but not open
conformations also showed increased HDX. The HDX results thus define many regions that are
less stable in the open than the closed conformations. Measurements of the free energy on the
closed and open states of the a5p1 headpiece fragment show an increase of 4.7 kcal/mol in the
open state (8). Our findings thus highlight critical regions in the a5p1 headpiece where this
increase in energy in the open conformation is likely to be stored.

In conclusion, our results add much to our understanding of how integrin a5p1 binds
fibronectin and how stabilization of the open conformation by ligand binding alters integrin
dynamics. Affinity measurements and stability measurements on WT and mutant fibronectin
fragments show that both the Fn9 and Fn10 domains make important contributions to affinity for
a5B1. A well-folded Fn9 domain and its Arg-1379 sidechain are required for full affinity;
however, other residues that were thought to be part of a synergy site appear to stabilize folding
of Fn9 rather than to contribute specific contacts as previously suggested. Owing to the prescient
modeling of Fn-a5pB1 interaction based on an 51 RGD peptide crystal structure (13) and a
cryoEM structure of a fibronectin fragment bound to a5f1 (12), our work added little
information on where fibronectin and a5B1 bind to one another.

Comparison of the a5B1 headpiece alone, which was almost completely in the closed
conformation, to the fibronectin-bound a5p1 headpiece, which was almost completely in the
open conformation, revealed interesting information on changes in integrin dynamics upon
conformational change. Binding of the Fn10 domain to the PI domain a1-helix backbone and
sidechain was accompanied by an increase in a1-helix dynamics. Normally, HDX decreases in
binding sites; therefore, the increase in HDX was attributed to the known conformational change
in the al-helix between the closed and open states in a5p1. This was supported by the greater
increase in HDX in a5B1 when bound to a cyclic RGD peptide, which induces the same open
state of a5P1 (8) yet buries less of the a1-helix in its complex. Merger of the al-helix with the
al'-helix in the open conformation was accompanied by a decrease in HDX. All other regions
involved in conformational change showed increased HDX, including a-helices that undergo
connecting rod-like movements in the fI domain, loops in the BI domain and the hybrid domain
at their shape-shifting interface, and contacts between the o and f-subunits. The increase in HDX
showed that these regions were more dynamic, i.e. had higher energy, in the open than the closed
conformation. In agreement, measurements of the free energy of the closed and open states of the
same a5B1 headpiece fragment show an increase of 4.7 kcal/mol in the open state (8). Thus, our
HDX measurements highlight, at least in part, regions in the a5B1 headpiece where this increase
in energy in the open conformation is stored. We believe it is interesting that this energy is
distributed in multiple regions throughout the I and hybrid domains rather than concentrated.
This distribution might serve to lower the energy of the transition state between the two states,
thus increasing the likelihood of the transition and the kinetics of conformational change.
Distribution might also serve to decrease the likelihood of denaturation of a specific portion or
the entirety of a domain. These results thus provide important insights into integrin
conformational change that are orthogonal and complementary to insights from previous
structural and thermodynamic studies.

10
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Experimental Procedures

Proteins and cRGD peptide. a5p1 headpiece and ectodomain (mature residues a5 F1—
L609/B1 Q1-E481, and a5 F1-Y954/B1 Q1-D708, respectively) were expressed in HEK 293S
GnTI7 cells and purified as described (14). The a5 D154A mutant of a5B1 ectodomain
(a5PP*AB1) was expressed in Expi293F GnT1™~ cells and purified in the same way. Fibronectin
fragments Fn10, Fn9-10, Fn8-10, and Fn7-10 (mature residues V1416-T1509, G1326-T1509,
T1265-T1509, and P1142-T1509, respectively) and their associated synergy site mutants
R1379A (FnR) and R1374A/P1376A/R1379A (FnRPR) were expressed in E. coli BL21(DE3) cells
and purified as described (37). The cyclic peptide ACRGDGWCG (> 95% pure) was synthesized
by GenScript. To form a5B1:-Fn9-10 and a5B1-Fn7-10 complexes, a5B1 headpiece was
incubated with 2-fold molar excess of Fn9—10 or Fn7-10 for at least 20 min at 23°C in 20 mM
Tris buffer pH 7.4, 150 mM NaCl, 2 mM MnClz and 0.2 mM CaClz. The complexes were then
isolated by size-exclusion chromatography.

Fluorescence polarization (FP). Saturation binding was performed with 10 nM FITC-
cRGD probe and varying concentrations of a5B1 headpiece or ectodomain. Competitive binding
was performed with 100 nM a5B1 headpiece or a5p1 ectodomain, 10 nM FITC-cRGD probe and
varying concentrations of Fn9-10 or Fn7-10. Binding was in 20 mM Tris buffer pH 7.4, 150
mM NacCl, supplemented either with 1 mM MgClz and 1 mM CacClz, or with 2 mM MnCl2 and
0.2 mM CaCly, as indicated. The mixture was allowed to equilibrate at 22°C for 2 h before
recording FP on a Synergy NEO HTS multi-mode microplate reader (Biotek). Experiments were
performed in triplicate unless otherwise indicated.

Thermal stability. Thermal denaturation was measured with a Prometheus NT.Plex
(NanoTemper Technologies). Fn7-10, Fn8-10 and Fn9-10 (1 mg/mL) in 20 mM Tris buffer
pH7.4, 150mM NaCl were heated from 20 °C to 95 °C at a rate of 1 °C/min. Intrinsic tryptophan
fluorescence was excited at 275 nm and emission was monitored at 350 nm and 330 nm. The
ratio of fluorescence intensities (F350/F330) is plotted as a function of temperature. Tm is defined
as the temperature at the inflection point of the curve.

Chemical denaturation. Fn10, Fn9-10, FnR9-10 and FnRPR9—10 (0.2 mg/mL) were
equilibrated in 20 mM Tris pH 7.4, 150 mM NaCl and indicated urea concentrations for 48 hours
at 20°C. Intrinsic tryptophan fluorescence were measured at 330 nm and 350 nm upon excitation
at 275 nm on a Prometheus NT.Plex (NanoTemper Technologies). The ratio of fluorescence
intensities (F350/F330) was fit as a function of urea concentration to a 2-state transition model
using the Linear Extrapolation Method (38):
ay + pnc + (ap + Ppc)exp (— %)

1+ exp (— —AGR_TmC)
where AG is the unfolding free energy in the absence of urea; c is the concentration of urea; m is
the cooperativity of transition from the native state (N) to the denatured state (D); R is the gas
constant; T is absolute temperature; an, AN, ap and fo are the y-intercept (o) and slope () of the
baseline of the native (N) and denatured states (D), respectively. Data for Fn9—10, Fn?9-10 and
FnRPRO_10 were fit with shared m because their increase in solvent-exposed surface upon
unfolding is similar (39).

Hydrogen deuterium exchange mass spectrometry. HDX MS studies were performed using
methods modified from those reported previously (40). In addition to the descriptions below,
comprehensive experimental details and parameters are provided in Table S1 and the
Supplemental Datafile, in the recommended (41) tabular format. Relative deuterium levels and

F350/F330 =

11
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percent deuteration values for all peptides described in both figures and text are provided in the
Supplemental Datafile. The HDX MS data have been deposited to the ProteomeXchange
Consortium via the PRIDE partner repository (42) with the dataset identifier PXD031508.

Deuterium exchange was measured for the following samples: a531 headpiece (74.5 uM),
Fn9-10 (68.6 uM), Fn7—10 (65.2 uM), a5B1 (59.6 uM) + cRGD (119.2 uM) mixture, a581-Fn9—
10 complex (47.3 uM), and a5B1-Fn7-10 complex (54.4 uM). Samples (2 pL) were diluted 15-
fold into 20 mM Tris, 150 mM NaCl, 2 mM MnClz and 0.2 mM CaClz, 99% D20 (pD 7.4) at 21 °C.
At deuterium exchange time points from 10 s to 4 h, an aliquot was quenched by adjusting the pH
to 2.5 with an equal volume of 4 M GnHCI, 200 mM sodium phosphate, 0.5 M tris(2-
carboxyethyl)phosphine hydrochloride (TCEP-HCI), H20 and digested offline with pepsin for 5
min on ice prior to UPLC separation.

Mass spectrometry (MS) analyses were performed with a Synapt-G2-Si coupled to a
nanoAcquity HDX Manager (Waters) (43). PLGS 3.0 and DynamX 3.0 were used to identify the
peptides and to measure deuterium incorporation. All comparison experiments were done under
identical experimental conditions such that deuterium levels were not corrected for back-
exchange and are therefore reported as relative (23). The error of measuring the mass of each
peptide was + 0.15 Da or less in this instrumental setup. Each experiment was performed in at
least duplicate (see Table S1). All replicates of a given dataset were merged to a single DynamX
file and the error bars in uptake graphs indicate the spread of the data as provided by the
DynamX software, which in most cases also includes measurements from more than one charge
state of any given peptide in any given replicate.

Equilibrium populations of a5f1 headpiece. The percentage of a5B1 headpiece bound to
ligand and the percentages of a5B1 in the closed or open conformations in the HDX samples were
calculated according to the following equations.

—_ C=0 _ [O]

(Eq 1) C = o chnf - [C]
1 = c_ [CIIL]

(Eq. 2) CL=C+L Ky = 0
s o_ [O]IL]

(Eq. 3) OL==0+L Ki= o0

(Eq.4)CL+OL == c+o+L 1 =CHOU_ 1( 1 )+ 1( Koo )

Ke™  (C1+[ONL  kS\1+KS.O) KkO\1+KS©

(Eq. 5) [C] + [C-L] + [O] + [O-L] = [a5B1]iotar
(Eq. 6) [L] + [C-L] + [O-L] = [L)gta

(Eq. 7) % bound a5B1= %

(Eq. 8) % closed complex = [Gg;::i]mal
29 hopencomsex= ol

Eq.1 describes the conformational equilibrium between the closed (C) and open (O)
conformations of a5f1 headpiece in the basal conformational ensemble. A ligand (L) can bind
each conformation in the ensemble to form the closed complex (C-L) and the open complex
(O-L) with intrinsic affinities K$ and K¢, respectively (Egs.2-3). Eq.4 relates the affinity of the
basal ensemble (K$™) to the intrinsic affinities (K and K) and the conformational equilibrium

(Kéan?), Which provides a way to determine K5, from experimentally measurable affinities.

KE™ and K§ were experimentally measured here (Figure S3). K¢ for cRGD or Fn in the

12
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presence of Mn?* was difficult to measure accurately by fluorescence polarization because ligand
binding/dissociation rates for the open conformation were too slow for the system to reach
equilibrium. Instead, we estimated K based on our previous affinity measurements for a.5B1
(8,16), which found that K was ~2000-7000 times smaller than K§ (Table S2).

Eqgs.5-6 are according to the law of conservation of mass. When known concentrations of
a5B1 headpiece and ligand are mixed, the equilibrium concentrations of each species ([C], [O],
[L], [C-L] and [O-L]) can be solved simultaneously using numeric methods from Eqs.2—6 in
which K&, K2, K&™, [05B1 Jwotat and [L]totat Were known inputs. The percentage of ligand-bound
aS5B1 headpiece was then calculated by Eq.7. The percentages of closed and open complexes
were calculated by Eqgs.8-9, respectively. The results were listed in Table S3.

13
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Figure Legends

Figure 1. a5p1 and fibronectin structures. (A) Three overall conformations of aSp1.
(B) Representative negative stain EM class averages for each conformation of a5p1; the EO
conformation is bound to Fn7-10. Scale bars are 10 nm. From (6). (C-D) Structures of a5p1
headpiece alone (PDB 3VI3)(C) and in complex with Fn7-10 (PDB 7NWL)(D). (E) Close-up
view of the a5p1/Fn7-10 interface.

Figure 2. Hydrogen-deuterium exchange of Fn9-10 and Fn7-10. (A-D) HDX of Fn9-
10 and Fn7-10 fragments in the absence of a5B1 is color coded for all peptides on the sequence
(A-B) or on the structures (C-D) at all time points. (A-B) show all overlapping peptides at each
time point, with each row showing a different set of non-overlapping peptides. The percent
deuterated values of each colored peptide are provided in Supplementary Figure S3 and in the
Supplementary Datafile. (C-D) Ribbon cartoons (PDB code 1FNF) color-coded for each
overlapping peptide; regions not covered by HDX are shown in black dotted lines. All peptides
are shown in this representation by dividing the ribbon representation into different segments for
each overlapping peptide. (E-G) Deuterium uptake curves for selected peptides.

Figure 3. Stabilities and binding affinities of Fn fragments. (A) Thermal unfolding of
Fn fragments monitored by tryptophan fluorescence. (B) Chemical unfolding of Fn fragments
monitored by tryptophan fluorescence. Data for Fn9-10, Fn?9-10 and FnRPR9-10 were fit with
shared m (fitting result m = 1.25+0.02 kcal-L-mol). (C-D) Affinities measured in triplicate by
fluorescence polarization with 100 nM a5B1 headpiece or a5B1 ectodomain, 10 nM FITC-cRGD
probe, and competition with varying concentrations of Fn9—10 or Fn7-10 in the presence of 1
mM Ca?*/Mg?. (C) Representative competitive binding curves; all conditions are shown in
supplementary Figure S2. (D) shows Kq values with fitting errors.

Figure 4. Alteration in Fn HDX upon binding of a5f1. (A) Differences in HDX of
Fn9-10 and Fn7-10 with and without a5B1-bound (AD = Duound Fn — Diree Fn) are shown for each
peptide plotted at the midpoint of its sequence position. The difference calculation was
performed using the data shown in Supplemental Figures S1 and S4, for free and bound forms,
respectively. All deuteration values and peptide sequences are found in the Supplementary
Datafile. Horizontal dashed lines mark AD = 0, £0.7 Da. For interpreting the HDX difference
data we chose a difference of 0.7 Da to mark differences that are clearly above the error of
measurement and are likely meaningful. (B-D) Deuterium uptake curves for selected peptides.

Figure 5. HDX of a5p1 headpiece in ligand-free (A), cRGD-bound (B), Fn9-10-bound
(C) and Fn7-10-bound (D) states at 4 hr are shown on the structure (PDB 3V13) as ribbon
cartoons, color coded according to the key. Regions not covered by HDX are shown in black
dotted lines. All structures are shown in the closed conformation for comparison regardless of
the actual conformations of the a5B1 headpiece in each state. All peptides are shown in this
representation by dividing the ribbon representation into different segments for each overlapping
peptide. The percent deuterated values of each colored peptide are provided in Supplementary
Figures S5-8 and in the Supplementary Datafile.

Figure 6. Deuterium uptake curves for selected peptides of a5p1 headpiece in
absence of ligand and presence of cRGD, Fn9-10, and Fn7-10. All deuteration values are found
in the Supplementary Datafile.
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Figure 7. Deuterium uptake differences between ligand-bound and free a5p1
headpiece. (A, B) Deuterium uptake differences between Fn7—10-bound and free a5p1
headpiece (AD = Dasp1-Fn7-10 — Drree o5p1) are shown on the closed (A) and open (B) o581
headpiece structures (3VI14 and 7NWL, respectively) for comparison. Peptides are colored as
shown in the key by their AD at following time points: B-ribbon, SDL2 and C-D loops at 10 s; al
and a1’ helices at 10 m; F-G (a5 subunit), SDL3, a3-p4, a5-B5 and F-G (B1 subunit) loops and
a2 and o7 helices at 1 hr; W2p4-W3B1 loop at 4 hr. Regions not covered by HDX are shown in
black dotted lines. (C, D) AD = Diigand bound-aspi — Drree asp1 fOr each peptide is plotted at the
midpoint of its sequence position. Horizontal dashed lines mark AD = 0, £0.7 Da, as described in
Figure 4. The difference calculation was performed using the data shown in Supplemental Figure
S5-S8, for free and bound forms, respectively. All deuteration values and peptide sequences are
found in the Supplementary Datafile.
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TABLE S1: HDX Data Summary and list of experimental parameters

DATASET (1): Fn9-10 | (2): Fn7-10 | (3): a5p1 | (4): a5p1 + cRGD | (5): a5p1 + Fn9-10 | (6): a5p1 + Fn7-10
Sample buffer 20 mM Tris, 150 mM NaCl, 2 mM MnCl,, 0.2 mM CaCl,, H20, pH 7.4
HD();‘;:S::]O“ Final D20 concentration = 93.3%, pHread = 7.0, 21 °C. See also footnote a

HDX time course

10's, 1 min, 10 min, 1 hr, 4 hr

HDX controls Minimum 3 undeuterated controls for each dataset
Back-exchange 30-35%
Number of a5=229 a5=192 a5i229 a5i229
eptides 30 32 B1=113 B1=102 pI=113 pI=113
pep Fn9-10=22 Fn7-10=20
_0< 1o —o4 o a5=95.1% a5=95.1%
Sequence 97.3% 69.8% gfzggéé’ gfzggz(ﬁ’ B1=83.8% B1=83.8%
g ©7%0 e Fn9-10=73.7% Fn7-10=43.5%
Average peptide a5=15.7 a5=16.0 a5i15'7 a5i15'7
lenoth 14 13.5 B1=16.2 B1=16.4 B1=16.2 B1=16.2
g ) ’ Fn9-10=12.9 Fn7-10=13.4
_ - 05=6.2 05=6.2
Redundancy 23 1.7 g?;ﬁg g?;ji B1=4.5 B1=4.5
' ’ Fn9-10=2.1 Fn7-10=1.7
Replicates 2 2 1° 20 40 2b
Repeatability +0.15 relative Da
Meaningful
differences® >0.70 Da

2 15-fold dilution with labeling buffer (same as sample buffer except prepared with 99.9% D20). 2-fold dilution with quench buffer [4 M GnHCI,
200 mM sodium phosphate, 0.5 M tris(2-carboxyethyl)phosphine hydrochloride (TCEP-HCI), H20, pH2.5].

b total 9 replicates of a5B1. 7 replicates from datasets 3,5,6 used for peptide mapping.

¢ All reported values are the average relative deuterium level as given by the DynamX software, which in some cases is an average of more than one
charge state, across all peptides in the replicates for each dataset. No statistical tests were applied to the HDX MS measurements. Rather, based on
measurements of mean methodological error [+/- 0.14 Da (Houde D, Berkowitz SA, Engen JR. (2011). J. Pharm. Sci. 100(6), 2071-2086] we chose
a value (+/- 0.35 Da) well above that as the threshold for calling differences in relative deuterium incorporation measurements meaningful. See also
explanations of this methodology in Engen JR, Wales TE. (2015). Annu. Rev. Anal. Chem. 8, 127-148.



Table S2. Intrinsic affinities of the closed and open conformations for aSp1.

aSp1 Ligand Metal Ions Kg (nM) Kg (nM) Kg / Kg Reference
Headpiece cRGD 1 mM Ca*/ Mg**  8500£1400  1.9+0.3 4474 (1)
Unclasped ectodomain ~ ¢cRGD 1 mM Ca*/Mg*  7000+£3400  2.2+0.3 3182 (1)
Semi-truncated cRGD 1 mM Ca*/Mg* 7100900  2.1+0.4 3381 (1)
Unclasped ectodomain ~ Fn9-10 1 mM Ca*/Mg*  2900+1100 0.44+0.15 6591 (1)
Unclasped ectodomain ~~ GRGDSPK 1 mM Ca*/Mg**  >220000 715 >3099 (2)
Unclasped ectodomain GRGDSPK 2 mM Mn** 3300+130 1.6+£0.2 2063  (2)
Unclasped ectodomain cRGD 2 mM Mn** 4645 — — 2)
Headpiece cRGD 2 mM Mn** 46.2+0.3 — —  This work

References

Li, J., Su, Y., Xia, W., Qin, Y., Humphries, M. J., Vestweber, D., Cabanas, C., Lu, C., and Springer, T. A. (2017)
Conformational equilibria and intrinsic affinities define integrin activation, EMBO J 36, 629-645. PMC5331762
Anderson, J. M., Li, J., and Springer, T. A. (2021) Regulation by metal ions and the ADMIDAS of integrin o531
conformational states and intrinsic affinities, Preprint.



Table S3. Conformational composition of free and ligand-bound a5p1 headpiece in the
HDX samples.

Ligand No Ligand cRGD Fn9-10 Fn7-10
K™ (nM) 3.2+40.3¢ 0.41+0.24" 0.62+0.30"
K§ (nM) 43.9+3.2° 30.9+13.6" 27.7+14.8"
K? (nM) 0.022-0.0063 0.015-0.0044 0.014-0.0040
[a5B1 ot (M) 74.5 59.6 47.3 54.4
[LigandJiotar (LM) 119 47.3 54.4

% closed unliganded* 99.37-99.82 0.005-0.005 0.28-0.29 0.33-0.33
% open unliganded® 0.63-0.18 0.00-0.00 0.01-0.00 0.00-0.00
% bound a5p1¢ 99.99-99.99 99.71-99.71 99.66-99.66
% closed complex® 7.31-7.34 1.27-1.30 2.17-2.21
% open complex” 92.69-92.65 98.44-98.40 97.49-97.46

¢ Values are meantstandard deviation of three independent experiments.

b Errors are fitting errors.

“ For values reported as a range, the first number was calculated by assuming K¢ = K§ /2000,
and the second number was calculated by assuming K = KS /7000. a5B1’s intrinsic affinity
in the open conformation (KJ) was estimated to be 2000-7000-fold higher than in the closed

conformation (KS) based on previous affinity measurements of various aSB1 preparations as
detailed in Table S2.



Figure S1. Complete HDX
peptide coverage at each
indicated time point for
Fn9-10 and Fn7-10. Peptides
are colored according to the
key shown with relative
deuteration (%) directly
overlaid on each peptide.
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Figure S2. Affinities of a5p1 ectodomain for Fn fragments in the presence of Ca?/Mg?*. Fitting
results (Ky values) are listed in Figure 3D.
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Figure S3. Affinities of a5p1 headpiece in the presence of Mn%. (A,
B) Representative plots of basal ensemble affinity (A) and intrinsic
affinity in the closed conformation (B) of a5B1 headpiece for cRGD. (C,
D) Basal ensemble affinity (C) and intrinsic affinity in the closed confor-
mation (D) of a531 headpiece for Fn9—10 and Fn7-10. In (B, D) the
titrations were performed in the presence of 15 uM mAb13 Fab to
saturably stabilize the closed conformation of a531 headpiece. Errors in

Ky are fitting errors.
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Figure S4. Complete HDX peptide coverage at each indicated time point for a5g1-bound
Fn9-10 and Fn7-10. Peptides are colored according to the key shown with relative deutera-
tion (%) directly overlaid on each peptide.
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Figure S5. Complete HDX peptide co

verage at each indicated time point for a581 headpiece. Peptides are colored according to the key shown

with relative deuteration (%) directly overlaid on each peptide.
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Figure S6. Complete HDX peptide coverage at each indicated time point for cRGD-bound a5B1 headpiece. Peptides are colored according to the
key shown with relative deuteration (%) directly overlaid on each peptide.
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Figure S7. Complete HDX peptide coverage at each indicated time point for Fn9—10-bound a5B1 headpiece. Peptides are colored according to

the key shown with relative deuteration (%) directly overlaid on each peptide.
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Figure S8. Complete HDX peptide coverage at each indicated time point for Fn7-10-bound a5B1 headpiece. Peptides are colored according to
the key shown with relative deuteration (%) directly overlaid on each peptide.
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Figure S9. All overlapping peptides in the 1 domain a1
and a1’ helices (A) and thigh domain F-G loop (B) region
are shown on the sequence, with each row showing a
different set of non-overlapping peptides. Each bar
represents a peptide color coded according to its AD.





